Subject: Re: How to mark std::array<T, N> moveable if only T is moveable
Posted by busiek on Tue, 23 Jul 2024 16:25:28 GMT

View Forum Message <> Reply to Message

mirek wrote on Thu, 18 July 2024 08:41Lance wrote on Wed, 03 July 2024 03:39Reminds me of
some exploration | did with Moveable.

| vaguely recalled that when | tested a few years back, the way Moveable was designed were
causing a compile time error with Windows/VSBuild. | would also welcome a redesign of
Moveable using more recent language facilities.

Suggestions? (But it needs to be backward compatible).

| was thinking about something like that:
#include <Core/Core.h>
#include <type_traits>

namespace Upp {
/I First way of marking class moveable is to be an ancestor of NtIMoveableBase
template <class T> class NtIMoveableBase {};

/I Second way is to specialize NtIMoveableClass
template <class T>
struct NtIMoveableClass
. std::integral_constant<bool,
std::is_trivial_v<T>
|| std::is_base_of v<Upp::NtIMoveableBase<T>, T>
I/ below is not needed if we make them derived from NtIMoveableBase
|| std::is_base_of v<Upp::Moveable <T>, T>
|| std::is_base_of v<Upp::Moveable<T>, T>
|| std::is_base_of v<Upp::MoveableAndDeepCopyOption<T>, T>> {};

/I For instance mark std::array<T, N> moveable if only T is moveable
template <class T, size_t N>

struct NtIMoveableClass<std::array<T, N>>

. std::integral_constant<bool, NtiIMoveableClass<T>::value> {};

/I Helper for checking whether class is moveable
template <class T>
inline constexpr bool IsNtIMoveable = NtIMoveableClass<T>::value;

/I Optional concept for c++20

template <class T>
concept NtIMoveable = IsNtIMoveable<T>;

}

using namespace Upp;

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1066
https://www.ultimatepp.org/forums/index.php?t=rview&th=12299&goto=60696#msg_60696
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60696
https://www.ultimatepp.org/forums/index.php

/I use of concept

template <NtIMoveable T>

struct MyVector

{

T *ptr;

I/l Or use static_assert

~MyVector() { static_assert(IsNtIMoveable<T>); }

8

CONSOLE_APP_MAIN

{

/I Checking if given type is moveable

static_assert(IsNtIMoveable<int>);

static_assert(IsNtIMoveable<const void *>);
static_assert(IsNtIMoveable<Vector<int>>);
static_assert(IsNtIMoveable<std::array<int, 5>>);
static_assert(IsNtIMoveable<std::array<Vector<int>, 5>>);
static_assert(!IsNtIMoveable<Thread>);

}

You could redefine NTL_MOVEABLE macro as a specialization of NtIMoveableClass.
But you need to change an assertion AssertMoveable((T*)0) to static_assert(IsNtIMoveable<T>).
Are those ideas usable?

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

