
Subject: Re: Make THISFN simpler and more powerful
Posted by Lance on Wed, 09 Oct 2024 14:09:28 GMT
View Forum Message <> Reply to Message

I don't like that fact that compilers are allowed to stuff random padding bits in a bitfield as they like,
but it's actually standard compliant.

In the above example, change unsigned to byte (Upp::byte of course) actually removes the extra
cost on total storage usage. But the padding MSVC inserts vs GCC's sequential packed bits will
result in binary incompatibilities. Worse, some old c tricks no longer work with MSVC.

A somewhat more realistic though simplified example.

class SomeFormat{
...
private:
 Font font;
 Color paper, ink, highlight;
 union{
 int32 dummy;
 struct{
 byte info1:3;
 byte info2:5;

 // allow individual font properties
 // to be Null for multi-tier composition
 bool faceNotNull:1;
 bool heightNotNull:1;
 bool widthNotNull:1;
 bool boldNotNull:1;
 bool strikeoutNotNull:1;
 bool underlineNotNull:1;
 bool italicNotNull:1;

 };
 };

};

In old c days, if we want to check if all Font properties are set, we can simply

bool SomeFormat::AllFontPropertiesSet()const
{
#define SOMEFORMAT_MASK (((1<<7)-1)<<8)
 return (dummy & SOMEFORMAT_MASK) == SOMEFORMAT_MASK;
#define SOMEFORMAT_MASK

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11937&goto=60927#msg_60927
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60927
https://www.ultimatepp.org/forums/index.php

}

And to mark all font properties as set(non-Null)

SomeFormat::SetAllFontProperties()
{
#define SOMEFORMAT_MASK (((1<<7)-1)<<8)
 return dummy |= SOMEFORMAT_MASK;
#define SOMEFORMAT_MASK
}

etc. With GCC, you can still do things like that. Total predictability. Fully appreciated.

End of the day, what benefits MSVC is going to achieve by padding random bits? I can see if a
bitfield crosses a machine's fast-integer boundary (a few bits in previous FAST-INTEGER and a
few in the following), there will be extra cpu cost involved. Other than that, what's going to be
saved?

Thumbs down for MSVC on this regard.

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

