
Subject: Choosing the best way to go full UNICODE
Posted by mirek on Sat, 27 May 2017 14:58:08 GMT
View Forum Message <> Reply to Message

Hi,

last week, for the first time, I have encountered a problem caused by presence of characters
outside of UCS2 range (did you know that emoji characters have assigned codepoints? I did not
either. Yet our www backend was failing because somebody send "thumbs up" in the message...
:)

So perhaps it is time for full support. The mission target is that these characters are correctly
loaded/stored to/from LineEdit, DocEdit, EditString, RichText.

Now I can see 3 paths to achieve this:

(1) Extend WString to 32-bits (so that sizeof(wchar) is 4 bytes). This is the most straightforward
and right now my favorite. Downsides is that I am a little bit afraid about backward compatibility
and that the performance will be worse than WString. Performance is less of an issue because I
believe that in most cases, texts are stored as UTF-8 String anyway, but worth checking.

(2) Add 32-bit LString (or "UString"?) and perhaps deprecate WString. Fixes the problem with
compatibility, but fattens the API.

(3) Keep WString and somehow fix things to work with surrogate pairs.

Any thoughts?

Mirek

Subject: Re: Choosing the best way to go full UNICODE
Posted by Zbych on Sat, 27 May 2017 18:02:23 GMT
View Forum Message <> Reply to Message

Correct me if I am wrong, but you need to keep wchar 2-bytes long to be compatible with WinApi,
ToSystemCharsetW and FromSystemCharsetW depend on this size.
So I would vote for DString (like DWORD).

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Sat, 27 May 2017 18:48:17 GMT
View Forum Message <> Reply to Message

Good point, but I do not think this is a showstopper. Clearly

String FromSystemCharsetW(const wchar *src)

Page 1 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48150#msg_48150
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48150
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=794
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48151#msg_48151
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48151
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48152#msg_48152
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48152
https://www.ultimatepp.org/forums/index.php

would have to be

String FromSystemCharsetW(const WCHAR *src)

and a bit of fixing would to be done. The advantage is that it would be all compile-time errors.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Sat, 27 May 2017 18:51:13 GMT
View Forum Message <> Reply to Message

A good contraargument is search in *.h files for WString. There is quite a lot of functions that
would need DString variant implemented.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 29 May 2017 12:36:09 GMT
View Forum Message <> Reply to Message

Hi Mirek!

Welcome to my problems, circa 1-2 years in of using U++ :lol:.

I didn't know if you remember, but I was pressuring you left and right to fix these issues, with
occasional fixes and what not.

Some fixes managed to get in, but there was no real interest in it, so my solution was to eventually
deprecate whole String support in U++, using it as a pure storage. String + custom conversions
methods + some custom things, like ToUpper, fixes the problems.

U++ is at least a decade behind on Unicode, with absolutely no good reason. It is not like the
issue can't all be fixed in like 3 weeks. I'm sure it would fail 100% of the more difficult compatibility
tests.

The good news is that these issues are so rare that you are extraordinarily unlikely to encounter
them as an American or European.

As anecdotal proof, this is the first time you encountered issues.

I'm using a very dense data representation method, but even like this, full support is almost 200
KiB of data in every single executable. This is without more advanced stuff, like scripts. I believe
180 KiB is the minimum data that can be stored for the first 3 Unicode planes, this vs. your 2048
entry table in U++, but this gives you lower, upper, title case and Unicode category. I have
unit-tests covering these, making sure they are always correct.

String and WString are used for storage. Mostly String.

Page 2 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48153#msg_48153
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48153
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48160#msg_48160
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48160
https://www.ultimatepp.org/forums/index.php

Contrary to popular belief, Unicode code points are not indexable, so DString does not help.
Unicode is glyph based. This + DString being the least beneficent method of storage makes
DString not really needed.

In most cases, you can treat the String as opaque.

When not, the ideal solution is an amortized string walker and light algorithm rewrites. You can
create an indexed string walker, that seeks, but if you ask it for indices in order, the seek
overhead is basically zero. This is only needed for glyph based algorithms, like case conversion
and rendering. Or a traditional string walker without indices, a bit faster, but a lit uglier to use, with
Get and ++/-- methods.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 29 May 2017 17:40:03 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Mon, 29 May 2017 14:36
Contrary to popular belief, Unicode code points are not indexable, so DString does not help.
Unicode is glyph based. This + DString being the least beneficent method of storage makes
DString not really needed.

I really feel like I am missing something here, but what does it mean "not indexable"?

Quote:
When not, the ideal solution is an amortized string walker and light algorithm rewrites. You can
create an indexed string walker, that seeks, but if you ask it for indices in order, the seek
overhead is basically zero. This is only needed for glyph based algorithms, like case conversion
and rendering. Or a traditional string walker without indices, a bit faster, but a lit uglier to use, with
Get and ++/-- methods.

What is the result of 'Get'?

Mirek

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 30 May 2017 08:31:03 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 29 May 2017 20:40
I really feel like I am missing something here, but what does it mean "not indexable"?

Page 3 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48162#msg_48162
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48162
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48165#msg_48165
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48165
https://www.ultimatepp.org/forums/index.php

Well the perceived problem with Utf8 is that you have a string s[i] and s[i+1] are code units, not a
code points. It is not indexable.

So the proposed solution is to use Utf32, where s[i] and s[i+1] are code points. Code points are
indexable.

But, here is the issue. Most, but not all algorithms fall into opaque ones or glyph based. In opaque
ones you care more about the data in bulk and don't really interpret each code unit. In glyph
based ones, s[i] and s[i+1] are code points, but that doesn't help you. You need to determine
glyph[i] and glyph[i + 1], so you are back to Utf8 levels of boundary determination even with Utf32.
You need "indexable" glyphs, not indexable code units, but they are not.

So the solution is to use a string walker.
Quote:
What is the result of 'Get'?

Get return the code unit.

The code still remains largely the same, you go from something like:

char* s = string_8bits;
while (s ...) {
 if (*s)

 s++;
}

to

StringWalker s = string_utf8;
while (s ...) {
 if (*s)

 s++;
}

In the constructor, you set up the first code unit.

*s, or Get, returns it.

++ seeks the next code unit.

In the same class, or a different one, you implement the GlyphWalker mechanics.

Page 4 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

With a GlyphWalker you can do things like "visual" strlen, where you pass it in A C1 C2 B C3 C4,
where Cx are punctuation marks, and the first glyph boundary is A and the second B, with the
returned length of 2. The same class handles right to left languages, with the help of block
boundary getters.

As you may know, I am implementing my own Core-like library, and one of its goals is to have
perfect Unicode support. I can help you with some pieces of code, but I need to know what you
want to do.

To expand upon the example I have given before, one needs ToUpper.

ToUpper is hard to get small and fast, since there is no rhyme and reason to it. I tested the data
and weird values pop up all the time.

What i did is encode all Unicode characters in two tables.

One is a table of words. The entire Unicode spectrum is divided into chunks of 8 to 32 characters.
The word table index is the chunk index. If all the characters in the chunk are well behaved, all
you need is the original table.

As an example, characters 0 tot 7 have the same properties and no cases, so the upper bits of the
word table are zero and the lower bits are the properties.

If the chunk is not well behaved, the upper bits are the index to a second table of qwords and the
lower bits are zero.

I tested all chunk sizes and surprisingly 8 characters/chunk occupy the least amount of RAM.

Using the two tables, you get something similar to this ancient code that is no longer up to date:

dword _ToUpper(dword c) {
	dword plane = c >> 16;
	if (plane < PLANES) {
		dword group = c / BS;
		dword offs = c % BS;
		word gdata = db1[group];
		if (gdata & 0x8000) {
			gdata &= 0x7FFF;
			return db2[gdata * BS + offs] & 0x3FFFF;
		}
		else
			return c;
	}
	return c;
}

Page 5 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

This is the fastest and most compact scheme I could come up with without some RLE or other
compression method. But this is meant to serve 1114112 code units across all 17 planes. Not just
2048 characters. Even if you somehow manage to squeeze 1114112 characters into a word table,
which is BTW impossible, when in some cases upper/title/lower case are all over 16 bits in size,
that is still 1114112 * bytes. My scheme compresses the range down to 131456 bytes across the
two tables, with the caveat that for planes that are not in use, planes above 2, c = ToUpper(c).

Did a quick test, and if somehow in the future, all 1114112 are assigned random values, you
probably will have a 600+ KiB table.

Maybe you can come up with and even faster or compact scheme, but I wanted it to be near
constant cost.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Tue, 30 May 2017 09:03:01 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 30 May 2017 10:31
Get return the code unit.

What is 'code unit' in your teminology?

If I go by definition here: https://en.wikipedia.org/wiki/Character_encoding, it does not make sense
with your explanation.

Now to explain what I am trying to do now is to provide some means to add full support to U++
editors in future. To that end, I need to define "cursor position" within the UNICODE text.

So far I believe that a "index of UNICODE codepoint" is a good cursor position. Alternatively,
grapheme could be a good cursor position too, but then sometimes you would like to edit
grapheme internals, like remove some combining mark, which could be difficult if grapheme is
indivisible.

Anyway, it is definitely somthing to think about.

Mirek

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 30 May 2017 09:23:15 GMT
View Forum Message <> Reply to Message

I meant code point.

Page 6 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48166#msg_48166
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48166
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48167#msg_48167
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48167
https://www.ultimatepp.org/forums/index.php

Get is the code point.

And what I claimed is that having code point = code unit only half-way solves the problem and you
get the least favorite and advantageous encoding in DString/Utf32.

The index of Utf code-point can be easily solved with a string walker that can work for any
encoding, from utf8 to 32 and there is no need to tie yourself down with DString supremacy.

Because once you reach "full" Unicode support with DString, you know that most of the
non-opaque string code in U++ will use the DString implementation and everything will be biased
towards 32 bit.

I prefer 1-3 string classes with an 8 bit bias and the same amount of "String walker" classes and
once one implements this, I believe in practice the amount of switching from one encoding to
another gets minimized.

I my library I only have String, with plans to add WString someday, and the complexity of Utf8 has
never made me wish for DString. Conversion to Utf16 only happens in WinAPI context anyway.
Plus on the web, Utf8 is the standard. You will probably find that across the globe, on average,
Utf8 is still the smaller method of storage. And in CJK context, Utf16 makes a lot of sense, even
with occasional surrogate pairs. Historic/academic CJK is where Utf32 shines, but still, in such
contexts, Utf is not the most popular.

Anyway, I would go with the same approach I went so many years ago.

Conversion from Utf8 to Ucs2 must be upgraded to Unicode 9.0 compliant Utf8 to Utf16. Utf8 1-4
code units must be converted to a single code point. Correct escaping and error recovery must be
implemented. The Unicode standard give you exact deterministic outcomes for any illformated
sequences, and combined with the EE you already have in U++, you can get non-destructive error
handling. This will leave you with the ability to read and write Unicode. The rest of U++ won't be
helped by this, but it is still an important step and will solve a few problems.

Then, one by one, I would convert pieces of code over to a standardized traversal mechanic, be it
a string walker class or something else you come up with.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Tue, 30 May 2017 09:45:16 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 30 May 2017 11:23I meant code point.

Get is the code point.

And what I claimed is that having code point = code unit only half-way solves the problem and you
get the least favorite and advantageous encoding in DString/Utf32.

Page 7 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48170#msg_48170
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48170
https://www.ultimatepp.org/forums/index.php

The index of Utf code-point can be easily solved with a string walker that can work for any
encoding, from utf8 to 32 and there is no need to tie yourself down with DString supremacy.

Because once you reach "full" Unicode support with DString, you know that most of the
non-opaque string code in U++ will use the DString implementation and everything will be biased
towards 32 bit.

Interestingly, this is not true at all in current U++ with WString. Most data are always in utf8 String.
WString is usually only used temporary to process data. Which was the original intention going to
32 bits 'DString'.

Actually, rethinking graphem problem, maybe we could have

GraphemString

with

String operator[](int i) // returns complete grapheme at position i
int GetCount() // returns number of graphemes

etc...

It would be an 'index' over Utf8 String, grapheme addressed.

See, my problem can be demonstrated by

TextCtrl::Ln

There is the storage for lines of editors. Now 'len' is number of 'cursor characters'. When changes
are done to the line, e.g. inserting something at cursor position, text is unpacked to WString, Insert
at cursor position is done, then text is packed back to utf8.

Now maybe, if I decide that grapheme is the 'cursor character', going to GraphemeString would be
relatively simple. And maybe even faster than using WString...

(All that said, all this will need some way how to provide GUI input / Draw output for graphemes....
but that is a story for another day).

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 08:30:09 GMT
View Forum Message <> Reply to Message

It looks like there are many possible ways to go forward. We can try several things and probably a
lot of things will work.

As long as we understand that there is no universal way to make Unicode indexable, but on a

Page 8 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48179#msg_48179
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48179
https://www.ultimatepp.org/forums/index.php

case by case basis, you can. The only thing you can universally do is to iterate linearly over
Unicode.

But I still think I gave you a partial solution so many years ago.

To reiterate:
1. Utf8 to Utf16 and vice-versa must be fixed under all scenarios. We also need to add Utf8 to
Utf32, but that is trivial compared to Utf16. So proper error recovery must be implemented and 4
byte long sequences must be converted to surrogate pairs.
2. The Unicode table must be expanded to more than 2048 characters. Maybe not full range, but
Unicode is based on blocks. We can move a bit closer to the CJK block, because for CJK, nobody
expects more than the basics. Probably 8k at least.
3. Take the opportunity to clean stuff up. Core has had several clean-ups and now C++11 shook
thing up. So this might be the perfect opportunity to make sure the designs and interfaces are
future proof.
4. Implement DString? I don't know yet. On the other hand, implementing DSting is easy and it
can be dropped in its own header and available for use.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 09:00:44 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 10:30It looks like there are many possible ways to go
forward. We can try several things and probably a lot of things will work.

As long as we understand that there is no universal way to make Unicode indexable, but on a
case by case basis, you can. The only thing you can universally do is to iterate linearly over
Unicode.

If you can iterate linearly, Unicode is indexable...

Quote:
But I still think I gave you a partial solution so many years ago.

To reiterate:
1. Utf8 to Utf16 and vice-versa must be fixed under all scenarios. We also need to add Utf8 to
Utf32, but that is trivial compared to Utf16. So proper error recovery must be implemented and 4
byte long sequences must be converted to surrogate pairs.

Agreed.

Quote:
2. The Unicode table must be expanded to more than 2048 characters. Maybe not full range, but

Page 9 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48180#msg_48180
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48180
https://www.ultimatepp.org/forums/index.php

Unicode is based on blocks. We can move a bit closer to the CJK block, because for CJK, nobody
expects more than the basics. Probably 8k at least.

Not so sure about this - not that important IMO at this point. So I will not get correct ToUpper for
many characters - that has little impact on most applications.

Quote:
4. Implement DString? I don't know yet. On the other hand, implementing DSting is easy and it
can be dropped in its own header and available for use.

I am now leaning against it. Vector<int> is good enough for utf32 - what we eventually need to do
with it.

I am now really thinking that "multibyte" String is the solution. The one that returns a variable
sequence of bytes for each position. I am now even thinking this does not need to be bound to
graphemes only.

The longterm point with that is to replace WString as processing facility in editors.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 09:30:33 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 31 May 2017 12:00
If you can iterate linearly, Unicode is indexable...

Sorry, you don't get it. I'm using a very specific meaning of indexable, probably that is the
problem.

A vector is indexable. You can reach v[7] without going though 0 to 6 and 0 though 6 can't do
anything to change the "offset" of 7. A list is not. You need to traverse it to get list[7].

You need to traverse a String s to get to s[7]. The contents up to 7 can change the offset of 7.
Unicode strings are not indexable.

Indexable data structures are predictable contant-cost no need to iterate over them to get some
"groundind". Non-indexable does not mean that you can't reach them though an index. It means
that you can get only obtain that index with a linear traversal O(index) traversal and you need to
reach than index at least once.

mirek wrote on Wed, 31 May 2017 12:00
I am now really thinking that "multibyte" String is the solution. The one that returns a variable

Page 10 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48181#msg_48181
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48181
https://www.ultimatepp.org/forums/index.php

sequence of bytes for each position. I am now even thinking this does not need to be bound to
graphemes only.

The longterm point with that is to replace WString as processing facility in editors.

That sound to me like you trying to make String indexable. Which can't be done with Unicode.
How are you going to determine the sequence of bytes that you must return for a position without
traversing it linearly?

If you give it a position as input, this still needs to be a deterministic constant cost memory jump.
That should be the bread and butter operation. In the few cases where you need your multibyte
behavior, there you abandon indexing randomly into the string (string[7] is forbidden) and iterate
over it, going left to right, returning multiple bytes for each logical "position".

Let me sum up the Unicode fallacy:
1. Code points are only indexable in Utf32. Which is not always helpful because
2. Glyps/Graphemes are never indexable.

The common misconception is that 1 and/or 2 are false.

mirek wrote on Wed, 31 May 2017 12:00
I am now leaning against it. Vector<int> is good enough for utf32 - what we eventually need to do
with it.

I agree, that is enough. And in some context even C vectors will work.

We do need a standardized functions that convert from code units to a single code point to fill up
these structures.

mirek wrote on Wed, 31 May 2017 12:00
Not so sure about this - not that important IMO at this point. So I will not get correct ToUpper for
many characters - that has little impact on most applications.

Half measures again...

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 10:07:26 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 11:30mirek wrote on Wed, 31 May 2017 12:00
If you can iterate linearly, Unicode is indexable...

Sorry, you don't get it. I'm using a very specific meaning of indexable, probably that is the

Page 11 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48183#msg_48183
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48183
https://www.ultimatepp.org/forums/index.php

problem.

A vector is indexable. You can reach v[7] without going though 0 to 6 and 0 though 6 can't do
anything to change the "offset" of 7. A list is not. You need to traverse it to get list[7].

I guess with "indexable" I was was not specific enough.

Imagine that you traverse through Utf8 String and each codepoint (or grapheme cluster) you store
in individual cell of

Vector<String>

Then the result is definitely indexable. Or am I missing something? (Of course, I would not use
Vector<String> for optimized version, but that is just implementation issue).

mirek wrote on Wed, 31 May 2017 12:00
That sound to me like you trying to make String indexable. Which can't be done with Unicode.
How are you going to determine the sequence of bytes that you must return for a position without
traversing it linearly?

Traverse it and store positions. (It is functional equivalent to splitting to Vector<String> as
described above).

mirek wrote on Wed, 31 May 2017 12:00
Not so sure about this - not that important IMO at this point. So I will not get correct ToUpper for
many characters - that has little impact on most applications.

Half measures again...
[/quote]

I do not mean that it is not important at all. Just that choosing proper basic interfaces is more
pressing at the moment.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 10:26:22 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 31 May 2017 13:07
Then the result is definitely indexable. Or am I missing something?

Yes, performance!

Unicode Strings are not indexable and indeed you can make them indexable with Vector<String>
(or better).

Page 12 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48184#msg_48184
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48184
https://www.ultimatepp.org/forums/index.php

But that is a bit of Sisyphean act. The conflict between them being non indexable and you forcing
them to be indexable will result in performance and memory overhead. Like I said before, you can
make a list indexable by traverse and store but you rarely would do this in practice, instead
replace your random access algorithm with a linear traversal one if possible.

Now, there are some mighty complex algorithms which probably will call for this, where we will
traverse and store.

But for the rest, I still think that traverse and store into a indexable structure is the worst case
scenario.

You still traverse the string once, but do not store only the current code point and maybe have a
few "last" positions to keep track of some other characters from previous positions.

And I would still advise the use of a StringWalker class, one that can seek to a random position,
but ideally the algorithm will never use this capability! After a seek (or just initialization) it will store
the current code point and a few more fields, like begin of the code point, size of the sequence.
Then it as ++ and -- to go one code point up or down. This class or a separate one can do the
same for glyphs.

Using such a class (or embedding this functionality directly into String) to traverse the string once
from beginning to end to process each codepoint/glyph will have almost zero performance
overhead.

The important part is not to make the confusion that such a class makes string index-able, i.e.
only random seek if can't avoid it. And random seek with small jumps. Writing the algorithm in
such a way that StringWalker is List<int>, not Vector<int>.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 10:40:19 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 12:26mirek wrote on Wed, 31 May 2017 13:07
Then the result is definitely indexable. Or am I missing something?

Yes, performance!

No.

Really, the issue at hand is this. Current code works like (inserting character into LineEdit):

Page 13 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48185#msg_48185
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48185
https://www.ultimatepp.org/forums/index.php

WString unpacked_line = line[i].ToWString();
unpacked_line.Insert(cursor_position, something);
line[i] = unpacked_line.ToString();

I am pretty sure that replacing WString with the new "Indexed unicode" String type will have
similar performance, if not better, plus code will not change significantly.

That said, I am really focused at this very issue, this is what I really need to solve.

For most "low-level" tasks like ToUpper walker is better approach.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 11:12:14 GMT
View Forum Message <> Reply to Message

Well since in that example you wont to use some new form of storage and not just a DString, this
is more of an implementation detail and not a public API.

I was discussing public API, not LineEdit implementation detail.

I want the parts that are publicly visible from U++ and often used to no longer be a decade behind
on Unicode.

As for the LineEdit, there are multiple solutions. I'm pretty sure one can make that work with Utf8
with 1-4 code unit string, but it is a bit more complicated. The only complication is of course
getting and changing the cursor for insertion, right? And related to that, but on a side note, my
String, when doing find, insert and other such operations, does have multiple variants. You can
insert in the middle both a byte like 32 for space or my "Char", which is a DWord, so inserting

everything, code points and code units. You can insert int the middle of a Utf8 string a Utf8/16/32
string, with on the fly conversion, and it helps if the Insert returns the end point of the insertion.
You already know the beginning.

For LineEdit, DString, Vector<int> or some multi-byte string would all work I think. I comes down
to what one is willing to implement.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 11:20:51 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 13:12Well since in that example you wont to use some
new form of storage and not just a DString, this is more of an implementation detail and not a
public API.

Page 14 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48186#msg_48186
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48186
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48187#msg_48187
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48187
https://www.ultimatepp.org/forums/index.php

I was discussing public API, not LineEdit implementation detail.

But that is just one use of that class. This situation repeats (basically everywhere there is a
defined 'position', so requires a tool to handle it. So I am pretty sure it is a useful public api. More
useful than WString.

Quote:
For LineEdit, DString, Vector<int> or some multi-byte string would all work I think. I comes down
to what one is willing to implement.

I guess we have started with (your correct) argument that DString or Vector<int> are not enough,
because we edit characters, not codepoints...

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 11:43:50 GMT
View Forum Message <> Reply to Message

Without RLE, I think you can get around this by positions not representing characters, but
sequence starts.

As a mandatory condition, every time the position is updated, it is guaranteed to be at the start of
a sequence.

As a more complicated example, let's say you have a selection of text, with a "begin" and "end"
pos. You handle a key press. Taking your start pos as a sequence start, you determine the
sequence end. This means looking to see how many code units it is, seeking over combination
marks and ligatures. Basically on the fly glyph analysis. With sequence start end end you know for
a fact that everything between these two values must go. You do the same for the end position.
As an optimization, you can mark everything for deletion between the start sequence begin and
end sequence end. The text marked to be replaced will replaced with multiple code units.

The real challenge is to standardize these operations so you don't have to repeat them.

Maybe we need some GlyphInfoExtractor class or something. Something when given a random
sequence of code units and a valid code point start, it can handle such common operations?

Here is a sample from unciode.org:

This is 14 code units, 5 code units, 4 glyphs. The user will see and recognize 4 items as more or
less "atomic", so we should focus on this.

We need and API that can locate each glyph start and allow us to replace glyphs 2 and 3 with an

Page 15 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48188#msg_48188
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48188
https://www.ultimatepp.org/forums/index.php

This can be done on the fly with something high level like:

or

or we can go lower level. Or we can go into multi-byte String territory.

PS: the high level stuff still is StringWalker territory.

File Attachments
1) char_combmark_ex1.png, downloaded 851 times

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 12:41:28 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 13:43Without RLE, I think you can get around this by
positions not representing characters, but sequence starts.

But that is just implementation issue. Semantically, it is the same.

FYI, my new "String" implementation would go like this

class MString {
 String text;
 int character_count; // number of code units groups, e.g. graphemes
 union {
 byte *offsets; // for tiny strings
 word *woffsets; // for small strings
 dword *loffsets; // for really big strings
 };

 String operator[](int pos) { // not often used likely, more for demo
 int pos1 = GetOffset(pos);
 return text.Mid(pos1, GetOffset(pos + 1) - pos1);
 }
}

Quote:
The real challenge is to standardize these operations so you don't have to repeat them.

Page 16 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5305
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48189#msg_48189
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48189
https://www.ultimatepp.org/forums/index.php

Yes. Hence MString. Note that with MString, after you perform Insert of another MString or
Remove, you just update offset table, no need to iterate anything again.

Quote:
PS: the high level stuff still is StringWalker territory.

Depends on what how you define "high level" :)

For me, really high level abstraction is where you abstract from those little pesky issues and
handle everything in high-level units (graphemes / characters).

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 13:06:35 GMT
View Forum Message <> Reply to Message

OK, let's see it in action.

I still think that MString is a text book case of Unicode indexability fallacy, but maybe I'm wrong.

And if it works, maybe it is fine.

Please let me know if you need some help for the basic stuff. I can also review Unicode
conformity of algorithms.

Do you want go full Utf8 minimal valid sequence validation and overlong prevention?

Code Points First Byte Second Byte Third Byte Fourth Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

With the rest error escaped?

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 13:25:51 GMT

Page 17 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48191#msg_48191
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48191
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 15:06OK, let's see it in action.

I still think that MString is a text book case of Unicode indexability fallacy, but maybe I'm wrong.

And if it works, maybe it is fine.

Please let me know if you need some help for the basic stuff. I can also review Unicode
conformity of algorithms.

Do you want go full Utf8 minimal valid sequence validation and overlong prevention?

Code Points First Byte Second Byte Third Byte Fourth Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

With the rest error escaped?

Not sure about that, but what I know for sure that I want to put decoding in single template (unlike
current charset.cpp) so that it can be fixed easily...

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 13:34:02 GMT
View Forum Message <> Reply to Message

OK, after thinking about it, overlong should be error escaped.

I think that the basic routine should produce some error flag if it does error escape.

I also think that (maybe on flag), I would like the basic encoding extended to full 32-bits (with error
flag). The reason is that it could be handy outside character use (e.g. storing relative offsets of
something).

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 31 May 2017 13:38:48 GMT

Page 18 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48192#msg_48192
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48192
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48193#msg_48193
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48193
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

mirek wrote on Wed, 31 May 2017 16:34
I also think that (maybe on flag), I would like the basic encoding extended to full 32-bits (with error
flag). The reason is that it could be handy outside character use (e.g. storing relative offsets of
something).

Sorry, I do not understand what you mean here...

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 31 May 2017 13:50:12 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 31 May 2017 15:38mirek wrote on Wed, 31 May 2017 16:34
I also think that (maybe on flag), I would like the basic encoding extended to full 32-bits (with error
flag). The reason is that it could be handy outside character use (e.g. storing relative offsets of
something).

Sorry, I do not understand what you mean here...

Ah, it is not really unicode related. But sometimes you have a set of 32-bit (or 31-bit) numbers
where you know that most of them are <128 (but some are not) and want to store it effectively. So
I was thinking that it would be nice to reuse the very same code for this...

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 05 Jun 2017 15:51:46 GMT
View Forum Message <> Reply to Message

Utf[8,16,32] <=> Utf[8,16,32] conversion routines commited...

Any tips for good unicode classification data (in single file)?

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 06 Jun 2017 07:28:38 GMT
View Forum Message <> Reply to Message

You mean Unicode General Category?

I have that encoded in my two table scheme.

If that is all you can want to include, it should be extremely small, something like (number of
characters / chunk size) * 1.2.

If you mean scripts, that is a bit more complex, mostly because I want the data small.

Page 19 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48194#msg_48194
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48194
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48195#msg_48195
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48195
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48208#msg_48208
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48208
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48214#msg_48214
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48214
https://www.ultimatepp.org/forums/index.php

I'm also working on Unicode names. It turns out that there is under 200 unique words in the
names. I want to use a huge string buffer where each byte in the string is a word, not a character.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Tue, 06 Jun 2017 08:41:27 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 06 June 2017 09:28You mean Unicode General Category?

I need to make some sense of it all... :)

Not yet sure what exactly I will need, but for now I am pretty sure I would like to have info that e.g.

is character based on

C

with

combining character.

That C is uppercase and there is corresponding lowercase c. Now I can se I can have

"Latin Capital Letter C with caron"

which is probably OK, but not sure if it is without ambiguities.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 06 Jun 2017 09:18:44 GMT
View Forum Message <> Reply to Message

There is no easy solution here I'm afraid.

You probably know the file:
 http://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt

What I do is read that file, compile all the information in RAM and write out C++ tables.

Page 20 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48219#msg_48219
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48219
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48220#msg_48220
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48220
https://www.ultimatepp.org/forums/index.php

The file has a lot but not all of the needed information. The question is how much of it you need
and how are you going to store it.

I don't understand the final point you were making about ambiguities? Characters are uniquely
defined, so are the canonical composition and decomposition rules, together with compatibility
substitutions.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Tue, 06 Jun 2017 11:21:34 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 06 June 2017 11:18
Characters are uniquely defined, so are the canonical composition and decomposition rules,
together with compatibility substitutions.

I suppose so. Still learning.

Your lib is BSD? Available somewhere?

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 06 Jun 2017 11:39:19 GMT
View Forum Message <> Reply to Message

mirek wrote on Tue, 06 June 2017 14:21cbpporter wrote on Tue, 06 June 2017 11:18
Characters are uniquely defined, so are the canonical composition and decomposition rules,
together with compatibility substitutions.

I suppose so. Still learning.

Your lib is BSD? Available somewhere?
Oh yeah, the Unicode spec is huge. But it also recommends that you implement as much as you
need for your needs, not the whole thing.

The lib is a bit more complicated. It is Apache Version 2.0, but not really released yet. More
precisely, the more advanced Unicode parts only exist on my disks yet, they are not committed.
But when they will be committed, it will be under Apache. How does future licensing work? :)

But I can share that, with the only caveat that the only things I'm really doing and are meant for
the final lib is conversion and encoding of UnicodeData.txt. I'm not planning on composition
handling for now since it is not about GUI or displaying text. My encoding scheme handles 4
things: category, upper, lower and title case.

I would like still to add script to that data and probably you can't dodge forever adding canonical
normalization support.

Page 21 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48222#msg_48222
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48222
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48223#msg_48223
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48223
https://www.ultimatepp.org/forums/index.php

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 06 Jun 2017 11:58:53 GMT
View Forum Message <> Reply to Message

As an example, here is my extractor.

It is part of the workbench projects, small poorly written fire and forget programs, so expect it to be
messy. Super messy and not maintained.

This one generates two tables which are then used by the real code to power 3 Unicode plane
functionality.

File Attachments
1) udb.zip, downloaded 345 times

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Thu, 08 Jun 2017 08:00:04 GMT
View Forum Message <> Reply to Message

My priority is CodeEditor right now, but right after I do want to take care on my side of canonical
decomposition too.

I'll gather stats like what % of characters can be decomposed and into how many characters on
average to come up with an optimal scheme. For Latin languages I expect a few hundred with at
most 3 characters in decomposition, with most having 2.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Thu, 08 Jun 2017 08:26:47 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Thu, 08 June 2017 10:00My priority is CodeEditor right now, but right after I do
want to take care on my side of canonical decomposition too.

What do you plan?

Quote:
I'll gather stats like what % of characters can be decomposed and into how many characters on
average to come up with an optimal scheme. For Latin languages I expect a few hundred with at
most 3 characters in decomposition, with most having 2.

That is my estimate too. I even thing that 3 codepoints is so sparse, that the basic table should
only store 2 (which means single base char + single combining mark) - that will allow for more
dense table, and 3 codepoint characters should be handled as exception.

Page 22 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48224#msg_48224
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48224
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5308
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48234#msg_48234
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48234
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48235#msg_48235
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48235
https://www.ultimatepp.org/forums/index.php

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Thu, 08 Jun 2017 08:43:00 GMT
View Forum Message <> Reply to Message

mirek wrote on Thu, 08 June 2017 11:26cbpporter wrote on Thu, 08 June 2017 10:00My priority is
CodeEditor right now, but right after I do want to take care on my side of canonical decomposition
too.

What do you plan?

I guess you missed my saga: http://www.ultimatepp.org/forums/index.php?t=msg&th=9945
&start=0&

I'm guessing I have about 3-4 hours more of work and I'll have a preview version done. Then I'll
upload it there and include it into my daily builds and test it for a couple of weeks.

mirek wrote on Thu, 08 June 2017 11:26
Quote:
I'll gather stats like what % of characters can be decomposed and into how many characters on
average to come up with an optimal scheme. For Latin languages I expect a few hundred with at
most 3 characters in decomposition, with most having 2.

That is my estimate too. I even thing that 3 codepoints is so sparse, that the basic table should
only store 2 (which means single base char + single combining mark) - that will allow for more
dense table, and 3 codepoint characters should be handled as exception.

That's why I'm gathering data to make informed decisions. I'll get back to you with the stats.

How do you want to handle compatibility decomposition? Like:
http://www.fileformat.info/info/unicode/char/0149/index.htm

My plan is to have a flag for compatibility decomposition vs normal ones, with it being off by
default. I'm not sure, but I think you can exclude them all if you don't want to bother with. Unicode
can be complicated.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Thu, 08 Jun 2017 09:22:53 GMT
View Forum Message <> Reply to Message

Here are the primary stats:
- there are only 5721 characters that have decomposition.
- 2060 out of them have normal decomposition. All of these are two characters. So representing
them is easy. Unfortunately the highest CP is 2FA1D. But it is CJK compatibility. I think it should
be ignored. Without those the highest codepoint is 1D1C0. But if you ignore a bunch of stuff, like

Page 23 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48236#msg_48236
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48236
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48237#msg_48237
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48237
https://www.ultimatepp.org/forums/index.php

hebrew, hiragana, musical notations I think one could stop even as low as the aptly named
character: http://www.fileformat.info/info/unicode/char/2adc/index.htm

Going lower than 0x2adc will soon cut of stuff like Greek. You need 2000 to not cut off Greek.

- the rest of decomposition are 2 to 4, but there are some weird exceptions, like a 18 character
one.
- if you stop ar 0x2000/Greek the max CP a decomposition is 8190. If yous top at 0x2adc, it is
12297.

So a dump scheme for the first 0x2adc or a bit higher would be 43.888 bytes. In my lib I already
have (256 * 256 * PLANES / BS) * 2 + count2 * 8 = 131456 bytes of data used by
uppercase/lower case, so even 43k more is pushing it. I'll investigate how to represent sparsely
both the first 0x2adc characters with exact 2 character long decomposition the entire Unicode
range.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Thu, 08 Jun 2017 11:00:01 GMT
View Forum Message <> Reply to Message

Not quite 100% done analyzing the data, but here is what I think I'll do:
- respect the 3 plane convention. Unicode has 17 planes, with the first 3 in active use. Plane 14 is
used, but it is specific and only has 368 allocated code points. It is so specific that I'll add exclude
it, the same as I do all planes except planes 0-2. All excluded planes have the property that any
function f(cp) = cp.
- I'll ignore all special substitutions: sub and superscript, font, circle, square, fractions and of
course compatibility substitutions. I won't be using a flag for now, just exclude them.
- I'll ignore all CJK COMPATIBILITY IDEOGRAPHs. There is no way a general purpose library
can provide satisfactory use case for these. If you really needs such substitution, you will probably
use a more competent third party library. f(CJK COMPATIBILITY IDEOGRAPH) = CJK
COMPATIBILITY IDEOGRAPH

All these combined with my two table solution, with a chunk size of 256 to 1024 will leave me with
around 8000-9000 bytes of data in each executable that does decomposition. Final numbers will
be determined once implementation is done and round trip testing is complete.

I think this is a reasonable subset that can handle NFD, at the small price of a flat 9K in exe size,
+ the size of the actual methods.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Sun, 11 Jun 2017 11:57:38 GMT

Page 24 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48238#msg_48238
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48238
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

cbpporter wrote on Thu, 08 June 2017 13:00Not quite 100% done analyzing the data, but here is
what I think I'll do:
- respect the 3 plane convention. Unicode has 17 planes, with the first 3 in active use. Plane 14 is
used, but it is specific and only has 368 allocated code points. It is so specific that I'll add exclude
it, the same as I do all planes except planes 0-2. All excluded planes have the property that any
function f(cp) = cp.
- I'll ignore all special substitutions: sub and superscript, font, circle, square, fractions and of
course compatibility substitutions. I won't be using a flag for now, just exclude them.
- I'll ignore all CJK COMPATIBILITY IDEOGRAPHs. There is no way a general purpose library
can provide satisfactory use case for these. If you really needs such substitution, you will probably
use a more competent third party library. f(CJK COMPATIBILITY IDEOGRAPH) = CJK
COMPATIBILITY IDEOGRAPH

All these combined with my two table solution, with a chunk size of 256 to 1024 will leave me with
around 8000-9000 bytes of data in each executable that does decomposition. Final numbers will
be determined once implementation is done and round trip testing is complete.

I think this is a reasonable subset that can handle NFD, at the small price of a flat 9K in exe size,
+ the size of the actual methods.

I have managed to squeeze complete composition to 3.8KB table... :)

Interesting observation: With UnicodeCompose / Decompose, with first 2048 codepoints covered
by "fast table", there is no need for further tables for ToUpper, ToLower, ToAscii.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 07:39:42 GMT
View Forum Message <> Reply to Message

What? How? Need to check it out.

I made a mistake in the estimate and actually how much data I need and the 9k got up to 34. So I
started working on a 3 table solution :).

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 12 Jun 2017 08:13:44 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Mon, 12 June 2017 09:39What? How? Need to check it out.

I made a mistake in the estimate and actually how much data I need and the 9k got up to 34. So I
started working on a 3 table solution :).

Page 25 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48243#msg_48243
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48243
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48246#msg_48246
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48246
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48247#msg_48247
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48247
https://www.ultimatepp.org/forums/index.php

Really trivial. 4 Vectors of dwords (original code, 3 decomposed codes), then delta it (that will
result in most values being the same), then ZCompress... (that will RLE and Huffman those same
values).

That said, I am only doing decomposition of characters in UnicodeData.txt.

Also, I perhaps need to add this

 https://en.wikipedia.org/wiki/Korean_language_and_computers# Hangul_in_Unicode

too...

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 08:21:40 GMT
View Forum Message <> Reply to Message

If you use an up to date UnicodeData or the one I uploaded and you go though the entire file, you
should have 100% coverage of all 120k Unicode codepoints. But do take care to cover the gaps.

I was thinking about calling compress too, but I'm not sure. That's why I cam up with the table
scheme. Even if I manage to massively compress it, I don't want three planes of Unicode eating
up a ton of RAM with a "dumb" decompressed massive memory layout.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 12 Jun 2017 08:28:12 GMT
View Forum Message <> Reply to Message

It does not need to. I am using Indexes after decompression.

Frankly I yet need to calculate how much memory it takes, but I think it will be about 100K.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 12 Jun 2017 08:31:33 GMT
View Forum Message <> Reply to Message

120K of Index data. Entirely acceptable for me.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 08:53:27 GMT
View Forum Message <> Reply to Message

Page 26 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48248#msg_48248
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48248
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48249#msg_48249
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48249
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48250#msg_48250
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48250
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48251#msg_48251
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48251
https://www.ultimatepp.org/forums/index.php

For how many code points do you have upper/lower support?

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 12 Jun 2017 08:57:51 GMT
View Forum Message <> Reply to Message

It is all work in progress, at this moment, I have only that composition/decomposition.

However, as I have written before, if you cover first 2048 codepoints with separate 'fast' table
(which I plan to do anyway), it is possible to implement lowercase/uppercase just by decompose,
alter first codepoint (using 'fast' table) and then recompose. Seems to work for all codepoints >
2048.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 09:37:22 GMT
View Forum Message <> Reply to Message

Interesting things in uppbox.

I might be able to reduce my 130 Kib UnicodeData.

But dammit, this is not what I'm supposed to be doing right now! You managed to side track me :).

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 12 Jun 2017 09:41:42 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Mon, 12 June 2017 11:37Interesting things in uppbox.

I might be able to reduce my 130 Kib UnicodeData.

But dammit, this is not what I'm supposed to be doing right now! You managed to side track me :).

...or you can wait for me to finish... :)

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 10:50:54 GMT
View Forum Message <> Reply to Message

No, I'll do it too. Reducing the 130 KiB will be welcome but really not a priority. If I had time, I
would do it right now.

Page 27 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48252#msg_48252
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48252
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48253#msg_48253
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48253
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48254#msg_48254
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48254
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48257#msg_48257
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48257
https://www.ultimatepp.org/forums/index.php

But the CodeEditor reword is a bust for now. There is no easy way to map a CodeEditor to all the
CSyntax objects that are created and retroactively update them. Plus I represent syntax in
expensive to copy structures, so I need to rework that. But scheduling is not on my side. So for
some time more I'll continue using the CodeEdtior fork.

Plus, I spent most of the day today first isolating Pdb from ide/Debuggers and then from IDE. It
almost compiles. But I have one major problem left before it compiles:

I can't find AK_ADDWATCH.

I searched all of U++ and WinSDK and I couldn't find where it is defined.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 11:06:16 GMT
View Forum Message <> Reply to Message

Found it!

Shenanigans again with those include file tricks you like :).

Anyway, it compiles and links. Crashes on start even though nothing is called. But I'll get it to
work!

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 12 Jun 2017 12:20:51 GMT
View Forum Message <> Reply to Message

Back to composition: tested out the 3 table method. Can't get it under 24000 bytes. I need to
represent 2116 code points and that is almost 17000 bytes. The rest is index data.

But seeing as there are only 7189 * 8 bytes of case data represented as 130 KiB, I guess it would
be better to touch up on that and leave composition as is. There must be a better way to
compactly represent 7189 code points from 200k ones. That is super sparse.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Tue, 13 Jun 2017 14:31:09 GMT
View Forum Message <> Reply to Message

Well this was quite frankly not necessary and a huge waste of time, but I managed to get down
my Unicode data from 130K to 68K. It includes 3 planes with charter type, upper, lower and title
case. I guess the nonexistent users of my library will be happy :).

I should have probably went with your compressed scheme, but I'm stubborn. We'll see what the
future holds, since only now am I getting to writing the decomposition API.

Page 28 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48258#msg_48258
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48258
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48259#msg_48259
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48259
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48272#msg_48272
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48272
https://www.ultimatepp.org/forums/index.php

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 14 Jun 2017 09:07:30 GMT
View Forum Message <> Reply to Message

Why the hell am I worrying about size of executables? It is not like hello world is not 400 KiB
under TDM :).

Anyway, Mirek, please let me know when the new support is in in Core in a nightly.

There is pretty much one way to convert from Utf8 to Ut16 and co, so comparing codes is a pretty
good method of spotting errors.

Thank you!

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 14 Jun 2017 10:07:55 GMT
View Forum Message <> Reply to Message

It looks like decomposition is not as simple as I first though. Take a look at:
http://www.fileformat.info/info/unicode/char/1f80/index.htm

This character decomposes into a composed character and a mark. So I guess decomposition
needs to be recursive.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 14 Jun 2017 10:17:32 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 14 June 2017 11:07Why the hell am I worrying about size of
executables? It is not like hello world is not 400 KiB under TDM :).

Auhm, I still do, to the extent. Surely 10KB is nothing, but 500KB would be too much - just for
unicode support that 99% of users is never going to use.

Quote:
Anyway, Mirek, please let me know when the new support is in in Core in a nightly.

There is pretty much one way to convert from Utf8 to Ut16 and co, so comparing codes is a pretty
good method of spotting errors.

Page 29 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48277#msg_48277
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48277
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48280#msg_48280
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48280
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48281#msg_48281
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48281
https://www.ultimatepp.org/forums/index.php

Thank you!

What I have implemented is already in trunk Core (and that means in nightly).

A lot is missing. I want to update existing 'fast' tables - I have some new about the information that
I would like to know, like

- IsRTL
- IsWide
- IsSymbol
- IsControl

etc...

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 14 Jun 2017 10:30:49 GMT
View Forum Message <> Reply to Message

Good find. What do you suggest to do about that?

- I can leave current code as is and perhaps add "FullDecompose" variant.
- I can decompose it to 3 codepoints outright

I think I like the second option better...

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 14 Jun 2017 10:42:01 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 14 June 2017 13:30Good find. What do you suggest to do about that?

- I can leave current code as is and perhaps add "FullDecompose" variant.
- I can decompose it to 3 codepoints outright

I think I like the second option better...

Here is what I am implementing right now:
1. A Decompose method. You give it a code point and it gives you raw UnicodeData.txt data. That
problematic character will still give you two results. This is already done.

But I practice I doubt it will ever be used, so much so that it barely qualifies as a public method.
Instead, everybody will use...

Page 30 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48282#msg_48282
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48282
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48283#msg_48283
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48283
https://www.ultimatepp.org/forums/index.php

2. A ToNFD() method. NFD is the canonical decomposition. The problematic character will result
in 3 code points. This will be the main public method.

So my main method will be the method you prefer, giving 3 results. I just gave it the Unicode
name.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Wed, 14 Jun 2017 17:09:30 GMT
View Forum Message <> Reply to Message

even more fun is:

3311

That expands to two katakana characters and mark, and both katakana characters further expand
to base katakana and mark.

All in all expands to 5 codepoints.

Trouble is that recompose must account for all combinations. I guess it will have to be multipass...

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 14 Jun 2017 21:19:17 GMT
View Forum Message <> Reply to Message

I hope the NDF algorithm chapter on unicode.org covers that: the hows and whys.

The whole thing is pretty crazy though. I'll have excellent Unicode support eventually, but there is
no way to get it under 100k data.

But I did experiment with Zlib, and all the tables can be squashed down a ton. Except the case
table, which only goes down to 50%. The only problem is that I don't have any Zlib support in the
my library yet. Plus, I would like to add conditional compilation.

You inspired me with the plugin system. I would like uncompressed data if the z plugin is absent,
otherwise automatic compression. I tested that the exe size growth due to zlib is outweighed by
the table compression. Deflate is pretty small.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Wed, 14 Jun 2017 21:31:09 GMT
View Forum Message <> Reply to Message

PS: that is a special composition. I went over the data over and over again and I found no good

Page 31 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48286#msg_48286
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48286
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48287#msg_48287
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48287
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48288#msg_48288
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48288
https://www.ultimatepp.org/forums/index.php

reason to handle box decomposition.

It is not like U++ will check to see if the font supports that character and if not, decompose it and
build CJK in a small box on the fly.

Decompositions that start with <smth> are all special, like , meaning that you can
decompose that character if you are doing font substitution to an approximation or <square>,
meaning that the code point is multiple characters arranged in a square or like <fraction>, when
you have 1/2 as a single code point and you can decompose it as 1/2, using 3 code points.

I choose to ignore all these for now since I can't figure out how to offer any worthwhile feature
related to these special substitutions. I don't even need normal decompositions, but it is pretty
cool to decompose diacritics and replace some bits since I'm an European and my native
language uses diacritics.

As for NCF and NDF I only found two good use cases: string equality and search. With the forms,
you don't compare code points, but glyphs, without building glyphs. If two string look the same on
your display, but have different code points due to diacritics, it is very useful to tell if they are

encoded as a "t" with a composition mark to be identified as the same string.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 19 Jun 2017 08:03:40 GMT
View Forum Message <> Reply to Message

My undestanding is that if decomposition sequence starts with "<", it is 'compatibility', if not, it is
'canonical'.

I believe that you should use compatibility seqences e.g. for comparing, but you should never
'recompose' these into single codepoint - one of reasons is that canonical compositions are
unique, but there can be the same compatibility decompositions for multiple codepoints (found out
that hard way during testing).

In either case, i have added a bool

int UnicodeDecompose(dword codepoint, dword t[MAX_DECOMPOSED], bool& canonical);

to 'decompose' API and Compose is now not using noncanonical decompositions.

I believe that my "Unicode INFO" code is now complete. In the end, it is about 12KB of data (6KB
compressed and 6KB of 'fast tables' for the first 2048 codepoints).

Documentation needs updating. Then the next part would be updating / deprecating those
ToLower/ToUpper routines for Strings, and most importantly, implementing "apparent character
logic".

Page 32 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48302#msg_48302
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48302
https://www.ultimatepp.org/forums/index.php

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 19 Jun 2017 08:22:08 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 19 June 2017 11:03My undestanding is that if decomposition sequence
starts with "<", it is 'compatibility', if not, it is 'canonical'.

I believe that you should use compatibility seqences e.g. for comparing, but you should never
'recompose' these into single codepoint - one of reasons is that canonical compositions are
unique, but there can be the same compatibility decompositions for multiple codepoints (found out
that hard way during testing).

That's why you read the spec!

Everything is convention based.

Compatibility decomposition and everything that is marked in compatibility in Unicode means that
it would not be part of Unicode and has no reason to exist in a standalone standard, but it had to
be added to be compatible with another standard.

Canonical is the only that is needed for comparing and search.

Compatibility decomposition and non-compatibility decomposition are separate entities with
separate names and compatibility one should not be used unless you are trying to be compatible
with another standard.

And the rest can be ignored. Like substitutions:
http://www.fileformat.info/info/unicode/char/2102/index.htm

I really don't think that users expect that hollowed out C to return true when compared to a plain
C.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 19 Jun 2017 08:23:46 GMT
View Forum Message <> Reply to Message

int UnicodeDecompose(dword codepoint, dword t[MAX_DECOMPOSED], bool& canonical);

PS: Unicode doesn't and shouldn't tell you if the decomposition is canonical or not. You ask it for
one or the other, never both in the same string.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 19 Jun 2017 08:40:02 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Mon, 19 June 2017 10:22

Page 33 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48303#msg_48303
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48303
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48304#msg_48304
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48304
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48305#msg_48305
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48305
https://www.ultimatepp.org/forums/index.php

I really don't think that users expect that hollowed out C to return true when compared to a plain
C.

I think this is where we differ.

I really believe that if I, as user, have a long document and I am searching for "Come", I really
want to find it the one starting with hollowed C too. Or, e.g. FB01 you want to match upon
searching for "fi".

(not that I am going to implement that anytime soon, but IMO this is the expected behaviour).

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 19 Jun 2017 08:51:35 GMT
View Forum Message <> Reply to Message

Yeah, that's why those decompositions are special and should not be used in day to day use.

Canonical decomposition in Unicode is not something to convert to when needed to solve some
task. It can be used as the sole encoding format for all your string because it doesn't change the
meaning of the string. Example: LoadFile("c:\\utf8.txt"). You could return the string as is, or you
could return one of the two canonical Unicode forms, with the original string never stored.

On the other hand, , <box> and other non standard decompositions change the meaning of
the text. They are computed when needed and you can't store your string as such 100% of the
time.

Subject: Re: Choosing the best way to go full UNICODE
Posted by mirek on Mon, 19 Jun 2017 08:58:41 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Mon, 19 June 2017 10:51Yeah, that's why those decompositions are special
and should not be used in day to day use.

Searching documents is day to day use. I think you got this wrong:

Quote:
Compatibility decomposition and everything that is marked in compatibility in Unicode means that
it would not be part of Unicode and has no reason to exist in a standalone standard, but it had to
be added to be compatible with another standard.

Canonical is the only that is needed for comparing and search.

Compatibility decomposition and non-compatibility decomposition are separate entities with
separate names and compatibility one should not be used unless you are trying to be compatible

Page 34 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48306#msg_48306
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48306
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48307#msg_48307
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48307
https://www.ultimatepp.org/forums/index.php

with another standard.

It really is not about other standard (well, can be, but not only). It is about equivalence when
searching.

Subject: Re: Choosing the best way to go full UNICODE
Posted by cbpporter on Mon, 19 Jun 2017 09:07:37 GMT
View Forum Message <> Reply to Message

Day to day use: standard encoding scheme, i.e. guaranteed form to have a string in.

Reading from a no normalized stream and getting NFD or NFC is not an error and can be a
standard behavior in a library.

Not day to day use: on demand encoding scheme.

Reading from a non normalized stream and getting substitutions is an error. Taking a string
and converting it on the fly to a substitution, doing a search to find that "C" like in the
example and then discarding the string is not an error.

There is no way I'm getting Unicode wrong.

The only misunderstandings are related to my use of English or being to vague in my expression
:).

Page 35 of 35 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=10007&goto=48308#msg_48308
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48308
https://www.ultimatepp.org/forums/index.php

