
Subject: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Wed, 28 Mar 2018 17:17:20 GMT
View Forum Message <> Reply to Message

Hello,

Either I am doing something wrong, or AsyncWork/CoWork's IsFinished() method is not working
properly (Tested on latest Upp/GCC/Linux kernel).

It always returns true;

Here is a simple test code to show the problem:

#include <Core/Core.h>

using namespace Upp;

CONSOLE_APP_MAIN
{
	StdLogSetup(LOG_FILE|LOG_COUT);
	
	Array<AsyncWork<void>> workers;
	
	for(int i = 0; i < 4; i++) {
		workers.Add() = Async([=]{ LOG("Started, worker #" << i); for(;;); });
	}
	Sleep(5000);
	
//	while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++) {
			auto& w = workers[i];
			if(w.IsFinished())
				LOG("Stopped, worker #" << i); // <<- Called, when it shouldn't.
		}
}

In the above test code, workers are supposed to run forever. So IsFinished should (?) return false.
But when I check them with IsFinished() method, I get positive results every time.

Am I doing something wrong?

Here is the log:

Page 1 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=49671#msg_49671
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=49671
https://www.ultimatepp.org/forums/index.php

CoWork constructed 7f86caf82060
Do0, looper: false, previous todo: 0
Pool::InitThreads: 8
CoWork thread #0 started
CoWork thread #1 started
CoWork thread #2 started
CoWork thread #3 started
CoWork thread #4 started
CoWork thread #5 started
CoWork thread #6 started
CoWork thread #7 started
#1 Waiting for job
Adding job
Releasing thread waiting for job, waiting threads: 1
#1 Waiting ended
#1 Job acquired
DoJob (CoWork 7f86caf82060)
Started worker #0
#4 Waiting for job
CoWork constructed 7f86caf82140
Do0, looper: false, previous todo: 0
#5 Waiting for job
#0 Waiting for job
#3 Waiting for job
#6 Waiting for job
#7 Waiting for job
#2 Waiting for job
Adding job
Releasing thread waiting for job, waiting threads: 7
CoWork constructed 7f86caf82220
Do0, looper: false, previous todo: 0
#4 Waiting ended
#4 Job acquired
DoJob (CoWork 7f86caf82140)
Started worker #1
Adding job
Releasing thread waiting for job, waiting threads: 6
CoWork constructed 7f86caf82300
Do0, looper: false, previous todo: 0
Adding job
Releasing thread waiting for job, waiting threads: 6
#0 Waiting ended
#0 Job acquired
DoJob (CoWork 7f86caf82300)
Started worker #3
#5 Waiting ended
#5 Job acquired

Page 2 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

DoJob (CoWork 7f86caf82220)
Started worker #2
Stopped worker #0
Stopped worker #1
Stopped worker #2
Stopped worker #3
CoWork Cancel0
WaitForFinish (CoWork 7f86caf82060)
//...

Best regards,
Oblivion

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by mirek on Sat, 31 Mar 2018 05:49:28 GMT
View Forum Message <> Reply to Message

Hopefully fixed. (CoWork::IsFinished bug).

Final testcase:

#include <Core/Core.h>

using namespace Upp;

CONSOLE_APP_MAIN
{
	StdLogSetup(LOG_FILE|LOG_COUT);
	
	Array<AsyncWork<void>> workers;
	
	for(int i = 0; i < 4; i++) {
		workers.Add() = Async([=]{ LOG("Started, worker #" << i); Sleep(500); });
	}
	
	while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++) {
			auto& w = workers[i];
			if(w.IsFinished()) {
				LOG("Stopped, worker #" << i); // <<- Called, when it shouldn't.
				workers.Remove(i);
				break;
			}

Page 3 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=49677#msg_49677
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=49677
https://www.ultimatepp.org/forums/index.php

		}
}

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Sat, 31 Mar 2018 10:51:01 GMT
View Forum Message <> Reply to Message

Hello Mirek,

Thanks! Now it's working as expected.

Best regards,
Oblivion.

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Fri, 17 Jul 2020 10:48:50 GMT
View Forum Message <> Reply to Message

in U++v.13068 x32 using last example code in the topic I'm getting such result
Started, worker #3
Started, worker #2
Started, worker #0
Started, worker #1
Stopped, worker #3
Stopped, worker #2
Stopped, worker #0
Stopped, worker #0
? is it some form of race condition (last 2 lines when stopping workers)... how it can be corrected?

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 05:51:27 GMT
View Forum Message <> Reply to Message

I found below code seems working good - without Race_Condition - (in u++ v.13068 windows
x32)...
#include <Core/Core.h>

using namespace Upp;

CONSOLE_APP_MAIN
{
	StdLogSetup(LOG_FILE|LOG_COUT);
	

Page 4 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=49678#msg_49678
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=49678
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54427#msg_54427
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54427
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54428#msg_54428
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54428
https://www.ultimatepp.org/forums/index.php

	Array<AsyncWork<int>> workers;
	
	// add worker
	for(int i = 0; i < 4; i++) {
		workers.Add() = Async([=]{ LOG("Started, worker #" << i); return i; });
	}
	
	Sleep(10);		//10/1000sec
	for (auto &fut : workers) {
		LOG("Stopped, worker #" << fut.Get());
	}
}
? BUT I wonder if there is a way to use atomic to counter to avoid race condition in the mirek's
code?.. because any way I tried to use it (I mean Atomic in his code) - I have been still getting
race condition :(

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Sat, 18 Jul 2020 07:59:07 GMT
View Forum Message <> Reply to Message

Hello JeyCi,

And welcome to the U++ forums!

Note that when the worker is removed from the array in the first example, the item count is also
decreased by 1.
This obviously invalidates the indices, so the code breaks the for loop and starts it all over again
(from 0).
Hence the "two or more zeros" in the log output. It might give the impression of race condition, but
it is not. (If that's the problem.)

(The reason is that the first example was about a problem in IsFinished(). It was always returning
true.
The example did not rely on those indices for its purpose, so I didn't care to make it more
correct...)

Please try this one instead:

CONSOLE_APP_MAIN
{
	StdLogSetup(LOG_FILE|LOG_COUT);
	
	Array<AsyncWork<int>> workers;
	

Page 5 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54429#msg_54429
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54429
https://www.ultimatepp.org/forums/index.php

	for(int i = 0; i < 4; i++) {
		workers.Add() = Async([=]{ LOG("Started, worker #" << i); Sleep(500); return i; });
	}
	
	while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++) {
			auto& w = workers[i];
			if(w.IsFinished()) {
				LOG("Stopped, worker #" << w.Get());
				workers.Remove(i);
				break;
			}
		}
}

Quote:
I found below code seems working good

Yes, that works, because, unlike the "non-blokcking" first example, this one has a "blocking" loop:

	for (auto &fut : workers) {
		LOG("Stopped, worker #" << fut.Get());
	}

The Get() method will wait the worker to finish its job unless it is alreay finished. So it is "blocking".

Best regards,
Oblivion

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 12:21:45 GMT
View Forum Message <> Reply to Message

Oblivion , thank you very much - you have got together some pieces of information I know but still
lack experience in its use - you have pointed the sides of its practical application...
1. I already used the idea about .Remove(i) - thanks to U++ examples. But thanks for your
explanation, why I was getting zeros in mirek'code - I didn't noticed this easy reason
2. you are right - it was really NOT a race condition yet
3. now I see that really my code is blocking, & mirek's non-blocking, and your example is blocking
as well...

Page 6 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54430#msg_54430
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54430
https://www.ultimatepp.org/forums/index.php

... Yet I'm a beginner at parallel programming - I considered non-blocking algorithm to be better
than blocking... but now I understood - they are simply for different purposes... and if I need to
return value to the main thread - of course I need blocking as synchronization should be done - I
think so now...
I'm just having the hope - if there is a way to return from mirek's non-blocking example value e.g.
with lock-free mechanism of atomic?... or in any case we will need synchronization (blocking) here
to return value from each thread?..
P.S.
I think now - it was just a hope...
in any case thank you for increasing my practical understanding such fresh knowledge for me :)
Best regards,

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Sat, 18 Jul 2020 13:31:16 GMT
View Forum Message <> Reply to Message

Happy to help :)

Quote:if there is a way to return from mirek's non-blocking example value

Which example, exactly, are you referring to?

The above code (in which IsFinished() method is called) is already getting the value without any
locking mechanism, and is non-blocking. IsFinished() method allows you to check the progress of
a given worker instance without waiting on it (i.e. non-blocking). Thus, if the work is finished then
Calling Get() won't wait either, it will immediately return the resultitng value of the offloaded
computation.

Let me put it this way:

CONSOLE_APP_MAIN
{
	StdLogSetup(LOG_FILE|LOG_COUT);
	
	Array<AsyncWork<Vector<int>>> workers;
	Vector<int> results;
	
	for(int i = 0; i < 10; i++) {
		workers.Add() = Async([=]{
			Sleep(Random(200));
			Vector<int> v;
			for(int j = i * 10; j < i * 10 + 10; j++)
				v.Add(j);
			return pick(v);
		});
	}

Page 7 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54431#msg_54431
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54431
https://www.ultimatepp.org/forums/index.php

	
	while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++) {
			auto& w = workers[i];
			if(w.IsFinished()) { // Non blocking check. It will not wait.
				// No locking required, since we dont use a shared variable...
				auto iota = w.Pick(); // Same as Get() but picks ("moves") the resulting vector.
				RDUMP(iota);
				results.Append(iota);
				Sort(results);
				RLOG("Sorted partial results: " << results);
				workers.Remove(i);
				break;
			}
		}
		
	RLOG("Final results: " << results);
}

Hopefully, this example can demonstrate the basic usage.

If you want a "real" example, check the SshBasics/SftpMT.cpp example here:
https://www.ultimatepp.org/reference$SshBasics$en-us.html

IF you have more questions and/or need more help, let me know.

Best regards,
Oblivion

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 14:44:38 GMT
View Forum Message <> Reply to Message

Oblivion wrote on Sat, 18 July 2020 15:31if the work is finished then Calling Get() won't wait
either, it will immediately return the resultitng value of the offloaded computation.
Yes, now I see - this is important difference in your code comparing it with mine
and here
Oblivion wrote on Sat, 18 July 2020 15:31while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++)
? is it duplication of loop & what for? why not use only one any row from these 2, not both?

Oblivion wrote on Sat, 18 July 2020 15:31// No locking required, since we dont use a shared
variable...
- well, I worried for a long time about this i - always doubting if it is shared variable - it always

Page 8 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54433#msg_54433
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54433
https://www.ultimatepp.org/forums/index.php

seems to me that counter itself is always shared & should be locked somehow when making i++...
it's difficult to understand why not?..
Oblivion wrote on Sat, 18 July 2020 15:31auto iota = w.Pick(); // Same as Get() but picks
("moves") the resulting vector.
- I liked this row :)

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 15:06:06 GMT
View Forum Message <> Reply to Message

JeyCi wrote on Sat, 18 July 2020 16:44	while(!workers.IsEmpty())
		for(int i = 0; i < workers.GetCount(); i++) {
? is it duplication of loop & what for? why not use only one any row from these 2, not both?
sorry to hurry with my question - I understood -
1 cycle "for" from the beginning till the end of the container;
second cycle (while) - to repeat again & again for-cycle from the beginning till the end of the
container - until container IsEmpty... because after first for-loop some worker-threads can be still
not finished... really logically

JeyCi wrote on Sat, 18 July 2020 16:44
- it always seems to me that counter itself is always shared & should be locked somehow when
making i++...

but frankly speaking, if you insist that not, I can agree with you now... because this i (counter) is
still in one (primary) thread, from where it is taken to workers - Geniusly... thanks a lot
===
after your example - more clear is now my view at threads...

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Sat, 18 Jul 2020 15:55:20 GMT
View Forum Message <> Reply to Message

Quote:1 cycle "for" from the beginning till the end of the container;
second cycle (while) - to repeat again & again for-cycle from the beginning till the end of the
container - until container IsEmpty... because after first for-loop some worker-threads can be still
not finished

Exactly.

But indeed we could have written it using a single loop. However, I would preferer not to. My
reasons:

1) It increases code compexity, even if by a small margin. When it becomes a habit, it will make it
a pain to read and debug even your own code. :)

Page 9 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54434#msg_54434
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54434
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54435#msg_54435
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54435
https://www.ultimatepp.org/forums/index.php

2) This is an example, and I prefer examples displaying their logic as clearly as possible.
(Although I admit I have a long way to go in this aspect...)

Quote:
- it always seems to me that counter itself is always shared & should be locked somehow when
making i++...
but frankly speaking, if you insist that not, I can agree with you now... because this i (counter) is
still in one (primary) thread, from where it is taken to workers

Well, in genral, this is the rule to follow, yes. But not in this case, no.
The lambda expressions/functions support is arguably one of the best thing that happened to
C++.
If you look closely, you can see that we are capturing the index (i) "by value" (i.e. we are copying
it):

[=] -> lambda: capture all by value (basically, copies or picks the local variables, and the implicit
"this" pointer if it is called from a class/struct.)
[&] -> lambda: capture all by reference (passes a reference) This can be quite dangerous,
depending on how it is used.

Thus, in our code we are iterating the index in a for loop, and we copy each iteration to a thread.
w0 (worker 0) gets i = 0, w1 -> i=1, w2 -> i=2, and so on...

It's a long topic to cover here, so I suggest you reading C++ lambda functions and capture types,
for more details, specifically Scott Meyers' famous book "Effective Modern C++". It is one of my
all-time favorites.

:)

Best regards,
Oblivion

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 16:34:52 GMT
View Forum Message <> Reply to Message

Oblivion wrote on Sat, 18 July 2020 17:55
If you look closely, you can see that we are capturing the index (i) "by value" (i.e. we are copying
it):

I think I see now in the class AsyncWork in the library - something like this

void Do(Function&& f, Args&&... args) { co.Do([=]() { ret = f(args...); }); }

Page 10 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54436#msg_54436
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54436
https://www.ultimatepp.org/forums/index.php

- thus, by value - ok I will know... thanks!
p.s.
but in my U++ v.13068 mingw win-x32 I have no .Pick() to test your last code... (please don't ask
me to update the u++ version - because I have win-x32 & last for it compiled 13664 just is having
some problems with one code, about which I yet need some tests to do)... But if some changes
can be done to your last code - to start it working without .Pick?.. because am trying to use .Get,
neither = (deleted function), nor auto& iota (reference) helps...

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by Oblivion on Sat, 18 Jul 2020 17:24:23 GMT
View Forum Message <> Reply to Message

Quote:- thus, by value - ok I will know... thanks!

No, that is an implementation detail. You shouldn't worry about that.
What I've meant is (in the test code above):

	for(int i = 0; i < 10; i++) {
		workers.Add() = Async([=]{ // <--- The capture point/syntax you should be aware of.
			Sleep(Random(200));
			Vector<int> v;
			for(int j = i * 10; j < i * 10 + 10; j++)
				v.Add(j);
			return v;
		});
	}

Quote:
(please don't ask me to update the u++ version - because I have win-x32 & last for it compiled
13664 just is having some problems with one code, about which I yet need some tests to do)...
But if some changes can be done to your last code - to start it working without .Pick?.. because
am trying to use .Get, neither = (deleted function), nor auto& iota (reference) helps...

Well, AFAIK, that's (picking without Pick() method) not possible unless you do some tricks, which
will make things even more complicated.

My suggestion would be to patch the AsyncWork code to your local source tree (its 20-30 lines of
code in a header file, thats all). Only two or three lines have to be patched.

Or

Page 11 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54437#msg_54437
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54437
https://www.ultimatepp.org/forums/index.php

Again, copy the code, and rename it as AsyncWork2 (or whatever you prefer) and add it to your
apps header:

The code you have to copy is in uppsrc/Core/CoWork.h :

template <class Ret>
class AsyncWork {
	template <class Ret2>
	struct Imp {
		CoWork co;
		Ret2 ret;
	
		template<class Function, class... Args>
		void Do(Function&& f, Args&&... args) { co.Do([=]() { ret = f(args...); }); }
		const Ret2& Get() { return ret; }
		Ret2 Pick() { return pick(ret); }
	};

	struct ImpVoid {
		CoWork co;
	
		template<class Function, class... Args>
		void Do(Function&& f, Args&&... args) { co.Do([=]() { f(args...); }); }
		void Get() {}
		void Pick() {}
	};
	
	using ImpType = typename std::conditional<std::is_void<Ret>::value, ImpVoid, Imp<Ret>>::type;
	
	One<ImpType> imp;
	
public:
	template< class Function, class... Args>
	void Do(Function&& f, Args&&... args) { imp.Create().Do(f, args...); }

	void Cancel() { if(imp) imp->co.Cancel(); }
	static bool IsCanceled() { return CoWork::IsCanceled(); }
	bool IsFinished() { return imp && imp->co.IsFinished(); }
	Ret Get() { ASSERT(imp); imp->co.Finish(); return imp->Get(); }
	Ret operator~() { return Get(); }
	Ret Pick() { ASSERT(imp); imp->co.Finish(); return imp->Pick(); }
	
	AsyncWork& operator=(AsyncWork&&) = default;
	AsyncWork(AsyncWork&&) = default;

	AsyncWork() {}

Page 12 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	~AsyncWork() { if(imp) imp->co.Cancel(); }
};

template< class Function, class... Args>
AsyncWork<
	typename std::result_of<
		typename std::decay<Function>::type
			(typename std::decay<Args>::type...)
	>::type
>
Async(Function&& f, Args&&... args)
{
	AsyncWork<
		typename std::result_of<
			typename std::decay<Function>::type
				(typename std::decay<Args>::type...)
		>::type
	> h;
	h.Do(f, args...);
	return pick(h);
}

This is all. :)

Or if you have some specific, simple example of your code, post it here, and let's see what we can
come up with. :)
Best regards,
Oblivion

Subject: Re: AsyncWork, IsFinished() may not be working properly
Posted by JeyCi on Sat, 18 Jul 2020 19:02:40 GMT
View Forum Message <> Reply to Message

Oblivion wrote on Sat, 18 July 2020 19:24
workers.Add() = Async([=]{ // <--- The capture point/syntax you should be aware of.

oh :) I was so blind
Oblivion wrote on Sat, 18 July 2020 19:24
My suggestion would be to patch the AsyncWork code to your local source tree (its 20-30 lines of
code in a header file, thats all). Only two or three lines have to be patched.
This is all.

Page 13 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=10308&goto=54438#msg_54438
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54438
https://www.ultimatepp.org/forums/index.php

perfectly - you have updated my 13068 with 30 lines & no need to wait new version for x32win :)
thank you very much - it really works (your code is ok)
Oblivion wrote on Sat, 18 July 2020 19:24
Or if you have some specific, simple example of your code, post it here, and let's see what we can
come up with.

it will be real offtop here,
Toggle Spoilerbut if you're interested about the code - one person gave me an example of how to
use from another class progress of GUI at progress-reference... in 13664 there are some
problems with that code - also concerning CoWork, I think...
but I was just interested about using GUIprogress FROM another class () or even another thread I
will need (I started from simple GUI class with 1 working-thread & my loading purposes) - & it was
the answer how I can make decomposition of my code... so I've just started to practice C++ in
U++ framework - I liked its user-friendly interface & already built portable versions & already
created my little utility for my needed goals - U++ is really very convenient & now I see in your
answers - with very ! good support from its community...
I know - CoWork changed since 13068...
but I'm now trying to refactor my quickly written & working code according to OOP - as a part of
getting acquainted with new language in free time - really interesting...
and classes of U++ really are giving speed for any application developing (I never have deal with
async & threads before) - thanks a lot!
I'm now updated :)

Page 14 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

