
Subject: Painter refactored/optimized
Posted by mirek on Sun, 11 Nov 2018 12:47:59 GMT
View Forum Message <> Reply to Message

After upgrading to 8C/16T machine, I was ashamed by pitiful gains (and terrible losses in some
cases) of Painter performance in MT mode.

Which lead me to spending about 80 hours trying to optimize it. The result is about 10%
improvement in ST performance and substantial improvements in MT - usually about 50%, but in
some cases 200%. In some cases MT is now 6x faster than ST (on 8C/16T AMD 2700X).

Enjoy :)

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Sun, 11 Nov 2018 17:06:55 GMT
View Forum Message <> Reply to Message

Hi Mirek!

Absolutely great news! I just can't wait to get to the office tomorrow morning to test this!

Thanks and best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by koldo on Sun, 11 Nov 2018 17:15:23 GMT
View Forum Message <> Reply to Message

Thank you Mirek.

Subject: Re: Painter refactored/optimized
Posted by Novo on Sun, 11 Nov 2018 18:55:14 GMT
View Forum Message <> Reply to Message

Thank you!
Could you please fix this:
uppsrc/Painter/BufferPainter.h:325:82: warning: control reaches end of non-void function
[-Wreturn-type]
 BufferPainter& NoImageCache(bool b = true) { ImageCache(false); }
 ^

Page 1 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50488#msg_50488
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50488
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50492#msg_50492
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50492
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50493#msg_50493
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50493
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50495#msg_50495
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50495
https://www.ultimatepp.org/forums/index.php

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 08:25:25 GMT
View Forum Message <> Reply to Message

Hi Mirek,

It is faster indeed, but now some segments of strokes drop out on the right edge of the view if they
are partially clipped by the right edge of the view. I think the 'blanking distance' from the right edge
is erroneously dependent on the scaling in the transformation being used. (I use the scaling and
transformation to implement zooming, rotation and panning of vector maps.)

Another issue is that Filled text drops out in the top edge when the text touches or crosses the
edge of the view. The outline (Stroked) text gets drawn until half of it is clipped from the top. (They
should obviously both be drawn as long as there are any pixels visible.)

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 08:35:30 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 12 November 2018 09:25Hi Mirek,

It is faster indeed, but now some segments of strokes drop out on the right edge of the view if they
are partially clipped by the right edge of the view. I think the 'blanking distance' from the right edge
is erroneously dependent on the scaling in the transformation being used. (I use the scaling and
transformation to implement zooming, rotation and panning of vector maps.)

Another issue is that Filled text drops out in the top edge when the text touches or crosses the
edge of the view. The outline (Stroked) text gets drawn until half of it is clipped from the top. (They
should obviously both be drawn as long as there are any pixels visible.)

Best regards,

Tom

Well, thanks for testing, in fact I was hoping you will test this and half expected that there will be
issues.

Do you think it would be possible to provide screenshots and/or testcase?

Are this issue apparent both in ST and MT?

Also: In Render.cpp, line 142, there is

Page 2 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50497#msg_50497
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50497
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50498#msg_50498
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50498
https://www.ultimatepp.org/forums/index.php

	if(pathattr.mtx_serial != preclip_mtx_serial) {

try to change that to

	if(pathattr.mtx_serial != preclip_mtx_serial || 1) {

Thanks, I will try hard to resolve this as soon as possible... (if you provide testcase, it should be
really soon :)

Mirek

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 08:39:55 GMT
View Forum Message <> Reply to Message

One last thing, does it show these problems without preclip?

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 08:55:10 GMT
View Forum Message <> Reply to Message

Mirek,

MT/ST does not have any effect on this.

You are absolutely right: Not using painter.PreClipDashed(); fixes both issues. (I do not use the
old PreClip anymore after PreClipDashed was introduced.)

Using:
if(pathattr.mtx_serial != preclip_mtx_serial || 1) {
Fixes both issues too. :)

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 08:59:06 GMT
View Forum Message <> Reply to Message

As for a testcase, my (commercial) code is complex and figuring out a testcase will take a while.
I'll see what I can do. Anyway, please let me know if the above already helped you on the track...

Page 3 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50499#msg_50499
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50499
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50500#msg_50500
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50500
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50501#msg_50501
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50501
https://www.ultimatepp.org/forums/index.php

Thanks and best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 09:08:51 GMT
View Forum Message <> Reply to Message

Hi,

After all, the test case was easy: Just use PainterExamples and add sw.PreClipDashed(); right
after constructing the BufferPainter in App::Paint() in main.cpp.

Then compile and run PainterExamples, select Stroke example and drag the right edge of the
window to gradually cover the the contents of the example. Both the line and the stroked text will
disappear before they are fully covered by the window edge.

I'll stay tuned for the fix to test. :)

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 10:15:29 GMT
View Forum Message <> Reply to Message

Found and fixed 3 issues, can you test please?

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 10:53:04 GMT
View Forum Message <> Reply to Message

Mirek,

As far as I can see, everything renders perfectly now.

Thank you very much for your excellent work on Painter again!!

Best regards,

Tom

Page 4 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50503#msg_50503
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50503
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50505#msg_50505
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50505
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50512#msg_50512
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50512
https://www.ultimatepp.org/forums/index.php

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 10:59:23 GMT
View Forum Message <> Reply to Message

BTW, preclipping is optimized as well. As long as you do not change transformation matrix too
often, it should be significantly faster.

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 11:39:12 GMT
View Forum Message <> Reply to Message

Hi,

I cannot confirm any change in PreClip() or PreClipDashed() performance with my usage profile.
But it is true that my program tries really hard to not pass Painter anything that would not be
visible at least partially. So, this may be the reason I'm not seeing the improvement here.

Importantly, both PreClip() and PreClipDashed() still improve rendering speed of a _very_ long
partially visible horizontal dashed line from e.g. 10 seconds to about 0.9 seconds. I guess the only
way to dramatically improve this is to clip the line before dashing it.

Is there any difference between the two preclip functions anymore?

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 12:25:59 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 12 November 2018 12:39Hi,

I cannot confirm any change in PreClip() or PreClipDashed() performance with my usage profile.
But it is true that my program tries really hard to not pass Painter anything that would not be
visible at least partially. So, this may be the reason I'm not seeing the improvement here.

Importantly, both PreClip() and PreClipDashed() still improve rendering speed of a _very_ long
partially visible horizontal dashed line from e.g. 10 seconds to about 0.9 seconds. I guess the only
way to dramatically improve this is to clip the line before dashing it.

Is there any difference between the two preclip functions anymore?

Yes, they basically behave the same. What is new is that inverse matrix is now calculated only if
transformation matrix changes.

Page 5 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50514#msg_50514
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50514
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50516#msg_50516
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50516
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50519#msg_50519
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50519
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Mon, 12 Nov 2018 15:15:57 GMT
View Forum Message <> Reply to Message

OK, that sounds logical. :)

Thanks and best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Mon, 12 Nov 2018 22:42:27 GMT
View Forum Message <> Reply to Message

After integrating new Painter with the target application, I have initially noticed that performance is
not so great.

Investigation revealed that the problem was the app was creating BufferPainter several times per
'frame'. So in order to achive good perfromance, it is advisable to limit the number of BufferPainter
destructors called. I have ended with single BufferPainter as member variable that exists for the
whole lifetime of the application.

There is now new method "BufferPainter::Create" that allow it to "rebind" to another ImageBuffer,
keeping as much initialized internal data as possible.

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Tue, 13 Nov 2018 08:14:11 GMT
View Forum Message <> Reply to Message

Hi Mirek,

Here's the test result from this morning.

If I replace the following in my Paint() method:

BufferPainter painter(ib);

With the following:

painter.Create(ib);

Page 6 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50522#msg_50522
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50522
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50523#msg_50523
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50523
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50530#msg_50530
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50530
https://www.ultimatepp.org/forums/index.php

And add a class variable 'BufferPainter painter;', The rendering will seemingly randomly drop
various elements, especially texts, from the result when using MT. It does not matter if I have
PreClip()/PreClipDashed() enabled or not. When using ST, everything works fine even with this
new Create() mechanism. Also, if I use the traditional 'BufferPainter painter(ib);' on each Paint(),
everything works fine with both MT and ST.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 08:18:37 GMT
View Forum Message <> Reply to Message

You have to call "Finish" at the end of rendering (that is also called by destructor). It waits for
thread "pipeline" to finish the work.

Anyway, if you create single BufferPainter per render and you have thousands of polygons to
render, you are probably fine. My problem was that my original code was creating like 30
BufferPainters...

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Tue, 13 Nov 2018 08:35:59 GMT
View Forum Message <> Reply to Message

Hi,

OK, I added 'sw.Finish();' in the end. There is still something strange with it.

Please add 'BufferPainter csw;' to PainterExamples App and Change the App::Paint() in main.cpp:
void App::Paint(Draw& w)
{
	Size sz = GetSize();
	if(ctrl.transparent) {
		for(int y = 0; y < sz.cy; y += 32)
			for(int x = 0; x < sz.cx; x += 32)
				w.DrawRect(x, y, 32, 32, (x ^ y) & 32 ? Color(254, 172, 120) : Color(124, 135, 253));
	}
	ImageBuffer ib(sz);
	{
		//BufferPainter sw(ib, ctrl.quality); // Removed

Page 7 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50531#msg_50531
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50531
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50532#msg_50532
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50532
https://www.ultimatepp.org/forums/index.php

		csw.Create(ib, ctrl.quality); // Added
		
		BufferPainter &sw=csw;
		
		if(ctrl.transparent)
			sw.Clear(RGBAZero());
		else
			sw.Clear(White());
		sw.Co(ctrl.mt);
		DoPaint(sw);
		
		sw.Finish(); // Added
	}
	w.DrawImage(0, 0, ib);
	
}

Just scaling causes strange behavior.

Best regards,

Tom

EDIT: My own code worked fine again after adding the 'sw.Finish();'. However, it feels like the
transformations do not get reset to default identity transformation in PainterExamples. Maybe this
should be part of Create()...?
EDIT2: This appears to solve the issue with PainterExamples. Add the following in the end of
BufferPainter::Create():
pathattr.mtx = attr.mtx = Xform2D::Identity();
However, I'm not sure if this breaks something else instead...

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 10:37:06 GMT
View Forum Message <> Reply to Message

Probably my bug.

Can you try to place Begin/End around DoPaint?

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Tue, 13 Nov 2018 10:52:55 GMT
View Forum Message <> Reply to Message

Page 8 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50534#msg_50534
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50534
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50535#msg_50535
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50535
https://www.ultimatepp.org/forums/index.php

Yes. Begin()/End() around DoPaint(); equally fixes the issue with PainterExamples. But I think it
would be nice to have a clean table after BufferPainter::Create()... Of course, I understand that
each re-initialized variable increases the cost towards full constructor/destructor pair.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 10:55:27 GMT
View Forum Message <> Reply to Message

Sure, I agree, I justed wanted hints about the problem...

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 11:22:50 GMT
View Forum Message <> Reply to Message

Please test (trunk).

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Tue, 13 Nov 2018 11:50:30 GMT
View Forum Message <> Reply to Message

The issue is still there in SVN 12531 if you do my above changes to PainterExamples. (Obviously,
adding Begin/End will still remove the issue.)

I can't figure out what exactly you changed in Create though. Or am I working on a completely
wrong SVN version?

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 12:54:50 GMT
View Forum Message <> Reply to Message

rev 12531:

void BufferPainter::Create(ImageBuffer& ib, int mode_)

Page 9 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50536#msg_50536
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50536
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50537#msg_50537
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50537
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50538#msg_50538
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50538
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50539#msg_50539
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50539
https://www.ultimatepp.org/forums/index.php

{
	ip = &ib;

	if(mode_ != mode || (Size)size != ib.GetSize()) {
		mode = mode_;

		rasterizer.Create(ib.GetWidth(), ib.GetHeight(), mode == MODE_SUBPIXEL);
		paths.Alloc(BATCH_SIZE);
		path_info = paths;

		ClearPath();

		render_cx = ib.GetWidth();
		if(mode == MODE_SUBPIXEL) {
			render_cx *= 3;
			subpixel.Alloc(render_cx + 30);
		}
		size = ib.GetSize();
	}

	Attr& a = attr;
	a.cap = LINECAP_BUTT;
	a.join = LINEJOIN_MITER;
	a.miter_limit = 4;
	a.evenodd = false;
	a.hasclip = false;
	a.cliplevel = 0;
	a.opacity = 1;
	a.dash = NULL;
	a.mask = false;
	a.invert = false;
	a.mtx_serial = 0;

	gradientn = Null;

	jobcount = fillcount = 0;
	cojob.Clear();
	cofill.Clear();

	attrstack.Clear();
	clip.Clear();
	mask.Clear();
	onpathstack.Clear();
	pathlenstack.Clear();
	onpath.Clear();

	preclip_mtx_serial = -1;
	path_index = 0;

Page 10 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

}

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Tue, 13 Nov 2018 13:06:38 GMT
View Forum Message <> Reply to Message

OK, the file was correctly updated. (Reverting my changes simultaneously slightly misguided me
to believe otherwise.)

Anyway the problem is still there: The transformation matrix does not get reset to identity in
Create.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Tue, 13 Nov 2018 15:23:03 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Tue, 13 November 2018 14:06OK, the file was correctly updated. (Reverting my
changes simultaneously slightly misguided me to believe otherwise.)

Anyway the problem is still there: The transformation matrix does not get reset to identity in
Create.

Best regards,

Tom

What now?

void BufferPainter::Create(ImageBuffer& ib, int mode_)
{
	ip = &ib;
	
	if(mode_ != mode || (Size)size != ib.GetSize()) {
		mode = mode_;
	
		rasterizer.Create(ib.GetWidth(), ib.GetHeight(), mode == MODE_SUBPIXEL);
	
		render_cx = ib.GetWidth();

Page 11 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50540#msg_50540
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50540
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50541#msg_50541
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50541
https://www.ultimatepp.org/forums/index.php

		if(mode == MODE_SUBPIXEL) {
			render_cx *= 3;
			subpixel.Alloc(render_cx + 30);
		}
		size = ib.GetSize();
	}

	if(!paths)
		paths.Alloc(BATCH_SIZE);

	path_info = paths;

	ClearPath();

	Attr& a = attr;
	a.cap = LINECAP_BUTT;
	a.join = LINEJOIN_MITER;
	a.miter_limit = 4;
	a.evenodd = false;
	a.hasclip = false;
	a.cliplevel = 0;
	a.opacity = 1;
	a.dash = NULL;
	a.mask = false;
	a.invert = false;
	a.mtx_serial = 0;
	
	gradientn = Null;
	
	jobcount = fillcount = 0;
	cojob.Clear();
	cofill.Clear();

	attrstack.Clear();
	clip.Clear();
	mask.Clear();
	onpathstack.Clear();
	pathlenstack.Clear();
	onpath.Clear();

	preclip_mtx_serial = -1;
	path_index = 0;
}

Subject: Re: Painter refactored/optimized

Page 12 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Posted by Tom1 on Tue, 13 Nov 2018 16:23:59 GMT
View Forum Message <> Reply to Message

Hi,

EDIT: Sorry, I did not pick up the changes yet. Please stand by. I will test these latest changes in
the morning at the office.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Wed, 14 Nov 2018 09:57:25 GMT
View Forum Message <> Reply to Message

Hi Mirek,

As of r12533 Create now works as expected :)

However, there seems to be a severe performance issue with MT. In some cases MT can be
three times slower than MT before this optimization round. E.g. a vector map rendering in 20 ms
with previous MT and in 40 ms with ST now takes 60 ms with new MT.

This is somehow related to changing transformations (of course within Begin/End pairs) which is
now extremely expensive, especially when using MT.

Thanks and best regards,

Tom

EDIT: I created a transformation intensive view that shows a matrix of just 90 symbols. Each of
the symbols are drawn with strokes and fills using a different translation for each within a
Begin/End pair. Rendering of this same view takes only 2.2 ms with ST but a whopping 45 ms
with MT! Using PreClip or not does not have any observable effect on the result.

Subject: Re: Painter refactored/optimized
Posted by mirek on Wed, 14 Nov 2018 12:17:19 GMT
View Forum Message <> Reply to Message

Well, thats disappointing.

I really would like to have some example so I can optimize for this case.

Mirek

Page 13 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50542#msg_50542
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50542
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50546#msg_50546
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50546
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50547#msg_50547
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50547
https://www.ultimatepp.org/forums/index.php

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Wed, 14 Nov 2018 12:39:24 GMT
View Forum Message <> Reply to Message

Hi,

You can test with PainterExamples by enabling MT and running Benchmark with OnPath and
OnTextPath examples.

Best regards,

Tom

EDIT: 'Pythagoras Tree Image' example portrays this slowdown too. Every other PainterExamples
example running MT is on par or faster compared to ST. With my 4C8T Intel Core i7 the best MT
gain is about 4x compared to ST. This is common with images and fills. Narrow geometries do not
gain so much boost from MT landing at 1x-2x speed improvement.

Subject: Re: Painter refactored/optimized
Posted by mirek on Wed, 14 Nov 2018 13:38:03 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Wed, 14 November 2018 13:39Hi,

You can test with PainterExamples by enabling MT and running Benchmark with OnPath and
OnTextPath examples.

Best regards,

Tom

EDIT: 'Pythagoras Tree Image' example portrays this slowdown too. Every other PainterExamples
example running MT is on par or faster compared to ST. With my 4C8T Intel Core i7 the best MT
gain is about 4x compared to ST. This is common with images and fills. Narrow geometries do not
gain so much boost from MT landing at 1x-2x speed improvement.

I have found that BeginOnPath was conservatively flushing rendering pipeline for no good reason,
so that is now optimized out. TextOnPath is still slower if you fill the letters, that will have to wait till
next batch of optimization I am afraid.

In fact, what is slow is alternating solid color / non-solid color fills - that is the case for both
Pythagoras Tree Image and TextOnPath... Will have to think if there is anything I can do there...

Subject: Re: Painter refactored/optimized
Posted by mirek on Wed, 14 Nov 2018 13:39:49 GMT

Page 14 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50548#msg_50548
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50548
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50549#msg_50549
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50549
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

(P.S. that OnPath optimization is commited, I would be glad if you test it)

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Wed, 14 Nov 2018 13:56:00 GMT
View Forum Message <> Reply to Message

Hi,

Absolutely! I'm extremely motivated to help you squeeze every single extra millisecond out of the
rendering times in Painter!

OnPath show now 1.4x improvement over ST and OnTextPath about 2.3x improvement... And
these were over ST not over previous MT where improvement is 5x that. Well done Mirek!

A question --- removed ---

Best regards,

Tom

EDIT: Removing question. Something else is now slowing down my code. It may be related to
translations (Xform2D).

Subject: Re: Painter refactored/optimized
Posted by mirek on Wed, 14 Nov 2018 14:19:26 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Wed, 14 November 2018 14:56Hi,

Absolutely! I'm extremely motivated to help you squeeze every single extra millisecond out of the
rendering times in Painter!

OnPath show now 1.4x improvement over ST and OnTextPath about 2.3x improvement... And
these were over ST not over previous MT where improvement is 5x that. Well done Mirek!

A question --- removed ---

Best regards,

Tom

EDIT: Removing question. Something else is now slowing down my code. It may be related to
translations (Xform2D).

Page 15 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50550#msg_50550
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50550
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50551#msg_50551
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50551
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50552#msg_50552
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50552
https://www.ultimatepp.org/forums/index.php

Well, what is definitely slow now if you are mixing solid fills and gradient or image fills. Can that be
the cause?

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Wed, 14 Nov 2018 14:55:05 GMT
View Forum Message <> Reply to Message

Hi,

My translated symbols are simply solid black over white background. The ST vs. MT speed ratio is
about 15..20x in favor of ST. They were about equally fast when compiled against r.11960.

I need to find a pattern here. There is no clear Begin/End dependency as far as I can see. I'm
trying to narrow down the code to find a test case.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Wed, 14 Nov 2018 16:57:13 GMT
View Forum Message <> Reply to Message

Screenshot / piece of code would be helpful (can be PM).

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 09:14:23 GMT
View Forum Message <> Reply to Message

Hi,

I finally figured out a way to share this test case. I send you code and a Serialized Painting to test.
(Actually, this can be quite handy for any Painter performance issue testing in general.) Here's the
code:

#include <CtrlLib/CtrlLib.h>
#include <Painter/Painter.h>

using namespace Upp;

class PainterBench : public TopWindow {

Page 16 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50553#msg_50553
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50553
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50554#msg_50554
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50554
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50557#msg_50557
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50557
https://www.ultimatepp.org/forums/index.php

public:
	Painting p;
	FileSel fs;
	
	void Open(){
		if(fs.ExecuteOpen("Select a painting to view")){
			p.Clear();
			p.Serialize(FileIn(fs.Get()));
		}
	}
	virtual bool Key(dword key, int count){
		switch(key){
			case K_CTRL_O:
				Open();
				return true;
		}
		return false;
	}
	
	typedef PainterBench CLASSNAME;

	PainterBench(){
		Sizeable();
	}
		
	virtual void Paint(Draw &draw){
		int64 STtiming=0;
		int64 MTtiming=0;
		
		ImageBuffer ib(GetSize());
		{
			BufferPainter bpainter(ib);
			bpainter.Co(true);
			bpainter.PreClipDashed();
			bpainter.Clear(White());
			bpainter.EvenOdd();
			
			int64 t0=usecs();
			bpainter.Paint(p);
			int64 t1=usecs();
			MTtiming=t1-t0;
			
		}
		{
			BufferPainter bpainter(ib);
			bpainter.Co(false);
			bpainter.PreClipDashed();
			bpainter.Clear(White());

Page 17 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

			bpainter.EvenOdd();
			
			int64 t0=usecs();
			bpainter.Paint(p);
			int64 t1=usecs();
			STtiming=t1-t0;
			
		}
		
		SetSurface(draw,Rect(ib.GetSize()),ib,ib.GetSize(),Point(0,0));
		
		double gain=(double)STtiming/(double)(0.1+MTtiming); // Avoid div by zero
		Title(Format("Rendering MT took %lld us, ST took %lld us, MT gain is
%.2f",MTtiming,STtiming,gain));
	}
};

GUI_APP_MAIN
{
	PainterBench().Run();
}

There are two Serialized painting files to test with: SomeRocks.painting exhibits the MT slowdown
issue dramatically. The other file is just for checking how fast a typical map view renders.

Best regards,

Tom

File Attachments
1) SamplePaintingsSerialized.7z, downloaded 280 times

Subject: Re: Painter refactored/optimized
Posted by mirek on Thu, 15 Nov 2018 09:48:46 GMT
View Forum Message <> Reply to Message

OK, so the short answer: "It is too simple"

Less short answer: Most of time is spend allocating and cleaning per-thread dynamic data. MT is
using up to 128 rasterizers, each rasterizer has to be allocated (~ 256KB) and after being used, it
has to be "reset". I guess there is a lot of cache misses in the process, meanwhile ST runs in
L1/L2 easily.

That said, I have some tricks in my mind to be implemented to fix this. The only trouble is that it
involves changes to memory allocater, which is difficult...

Page 18 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5695
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50558#msg_50558
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50558
https://www.ultimatepp.org/forums/index.php

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 10:43:24 GMT
View Forum Message <> Reply to Message

Hi,

The difference is so large that it makes me wonder if ST allocates/resets any rasterizers at all on
the fly?

Could the number of rendering threads be pre-selected and a sufficient number of rasterizers be
pre-allocated for MT so that there would be no extra allocation/reset -penalty for re-using the
same BufferPainter -- as was just introduced by BufferPainter::Create?

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Thu, 15 Nov 2018 10:55:08 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 15 November 2018 11:43Hi,

The difference is so large that it makes me wonder if ST allocates/resets any rasterizers at all on
the fly?

The difference is that ST has just one rasterizer :)

Quote:
Could the number of rendering threads be pre-selected and a sufficient number of rasterizers be
pre-allocated for MT so that there would be no extra allocation/reset -penalty for re-using the
same BufferPainter -- as was just introduced by BufferPainter::Create?

Perhaps, but let me try those optimizations I have in mind first...

(Note that while the ST/MT ratio is horrible, it is still <ms for both mt and st... I guess that if you
would add that Clear into time, difference would be much less).

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 11:14:08 GMT

Page 19 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50559#msg_50559
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50559
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50560#msg_50560
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50560
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

Hi,

You say <ms??? ... you mean below one millisecond for MT??? I get something like 16 ms for MT
and 300 us for ST... :? What exactly are your readings?

I bet your hardware is Superb! Mine is Core i7 4790K @ 4 GHz (4C/8T). Windows 10 Professional
64 bit. Compiled with MSBT17x64.

Do you have anything this old to test with?

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Thu, 15 Nov 2018 11:33:11 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 15 November 2018 12:14Hi,

You say <ms??? ... you mean below one millisecond for MT??? I get something like 16 ms for MT
and 300 us for ST... :? What exactly are your readings?

I bet your hardware is Superb! Mine is Core i7 4790K @ 4 GHz (4C/8T). Windows 10 Professional
64 bit. Compiled with MSBT17x64.

Do you have anything this old to test with?

Best regards,

Tom

Nope, that is just difference in testing, sorry, I have adopted it to my development package (which
is benchmarks/LionBenchmark). There I am testing by repeatedly doing the paint, with the same
BufferPainter, until I spend 1 second, then compute the time based on number of renders
achieved.

It is sort of similar to having single global BufferPainter.

My numbers with your example are about the same for ST and half for MT - at least, those 8 cores
show up :)

Now if I insert some bechmarking code, it is obvious that those 8 ms in MT are spend by
allocating / initializing memory...

Page 20 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50561#msg_50561
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50561
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50562#msg_50562
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50562
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Painter refactored/optimized
Posted by mirek on Thu, 15 Nov 2018 11:40:16 GMT
View Forum Message <> Reply to Message

OK, I have just found that I have accidentally deleted that precious initialized memory in Create.
So the new version is in the trunk. Changing your example with global BufferPainter now shows
some pretty significant gains:

#include <CtrlLib/CtrlLib.h>
#include <Painter/Painter.h>

using namespace Upp;

class PainterBench : public TopWindow {
public:
	Painting p;
	FileSel fs;
	BufferPainter bpainter;
	
	void Open(){
		if(fs.ExecuteOpen("Select a painting to view")){
			p.Clear();
			p.Serialize(FileIn(fs.Get()));
		}
	}

	virtual bool Key(dword key, int count){
		Refresh();
		switch(key){
			case K_CTRL_O:
				Open();
				return true;
		}
		return false;
	}
	
	typedef PainterBench CLASSNAME;

	PainterBench(){
		Sizeable();

		p.Serialize(FileIn("C:/xxx/PainteTest/SomeRocks.painting"));
	}

Page 21 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50563#msg_50563
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50563
https://www.ultimatepp.org/forums/index.php

		
	virtual void Paint(Draw &draw){
		int64 STtiming=0;
		int64 MTtiming=0;
		
		ImageBuffer ib(GetSize());
		{
			bpainter.Create(ib);
			bpainter.Co(true);
			bpainter.PreClipDashed();
			bpainter.Clear(White());
			bpainter.EvenOdd();
			
			int64 t0=usecs();
			bpainter.Paint(p);
			int64 t1=usecs();
			MTtiming=t1-t0;

			bpainter.Finish();
		}
		{
			bpainter.Create(ib);
			bpainter.Co(false);
			bpainter.PreClipDashed();
			bpainter.Clear(White());
			bpainter.EvenOdd();
			
			int64 t0=usecs();
			bpainter.Paint(p);
			int64 t1=usecs();
			STtiming=t1-t0;

			bpainter.Finish();
		}
		
		SetSurface(draw,Rect(ib.GetSize()),ib,ib.GetSize(),Point(0,0));
		
		double gain=(double)STtiming/(double)(0.1+MTtiming); // Avoid div by zero
		Title(Format("Rendering MT took %lld us, ST took %lld us, MT gain is
%.2f",MTtiming,STtiming,gain));
	}
};

GUI_APP_MAIN
{
	PainterBench().Run();
}

Page 22 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 12:07:49 GMT
View Forum Message <> Reply to Message

Hi!

Yes it indeed does. But even better: Now my real application rendering vector maps shows for the
first time in MT Painter history consistent and significant MT/ST rendering speed gains of about
2.5x on the average with real data! :)

Thank you Mirek very much! You really Rock!

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 12:23:41 GMT
View Forum Message <> Reply to Message

Hi,

One minor issue: When in Paint with global BufferPainter and only calling bufferpainter.Create(ib);
the rendered area does not change to current ib size. (E.g. After maximizing the window the
bufferpainter will only render on the initial initial ib area leaving the rest white.) I need to
additionally call bufferpainter.Co(true or false); to get the bufferpainter work on the current ib size.

This is not a problem for me, but maybe it would be more appropriate to handle the resizing in
Create somehow.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Thu, 15 Nov 2018 12:33:42 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 15 November 2018 13:23Hi,

One minor issue: When in Paint with global BufferPainter and only calling bufferpainter.Create(ib);
the rendered area does not change to current ib size. (E.g. After maximizing the window the
bufferpainter will only render on the initial initial ib area leaving the rest white.) I need to
additionally call bufferpainter.Co(true or false); to get the bufferpainter work on the current ib size.

This is not a problem for me, but maybe it would be more appropriate to handle the resizing in

Page 23 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50564#msg_50564
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50564
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50565#msg_50565
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50565
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50566#msg_50566
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50566
https://www.ultimatepp.org/forums/index.php

Create somehow.

Best regards,

Tom

Ops, thats a bug. Fix in trunk, hopefully...

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Thu, 15 Nov 2018 12:44:40 GMT
View Forum Message <> Reply to Message

And Yes! It works!

Thanks and best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Fri, 16 Nov 2018 09:23:09 GMT
View Forum Message <> Reply to Message

Hi Mirek,

While on the subject, I decided to do some testing of thread count for MT Painter. What I found
was interesting: My typical map renders at roughly 250 ms with ST and 100 ms with default 10
thread MT. (On my hardware CPU_Cores() returns 8 and CoWork initializes a thread pool of 10
threads.)

So I tampered a little bit with CoWork.cpp, trying with different thread counts:

int CoWork::GetPoolSize()
{
	int n = GetPool().threads.GetCount();
//	return n ? n : CPU_Cores() + 2;
	return n ? n : 4;
}

CoWork::Pool::Pool()
{
	ASSERT(!IsWorker());

//	InitThreads(CPU_Cores() + 2);
	InitThreads(4);

Page 24 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50567#msg_50567
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50567
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50569#msg_50569
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50569
https://www.ultimatepp.org/forums/index.php

	free = NULL;
	for(int i = 0; i < SCHEDULED_MAX; i++)
		Free(slot[i]);
	
	quit = false;
}

In this test I ended up with four threads which yield about same performance as 10 threads. When
dropping to three threads or below, the MT gain started to fade away.

I think the optimal thread count for CoWork depends on the job's balance of CPU load and
memory bandwidth. Also, the CPU and memory bus design changes this balance. As the new
CPUs tend to offer a lot of cores (and concurrent threads), a simple or well optimized algorithm
will easily saturate the memory channels with a reasonably small subset of cores being used. I'm
not sure though, if there is much point in reducing threads (and therefore freeing cores for other
tasks), if the memory bus will remain saturated anyway.

Best regards,

Tom

Subject: Re: Painter refactored/optimized
Posted by mirek on Fri, 16 Nov 2018 10:20:23 GMT
View Forum Message <> Reply to Message

IMO, that is to be expected, as it is really 4C CPU...

10 threads default number for CoWork takes into account that perhaps some threads will do
blocking operations (e.g. files). And in some workloads, hyperthreading has benefits.

That said, it is true that it would be nice to detect that threads are "wasted", but I am not sure how
to do that...

Mirek

Subject: Re: Painter refactored/optimized
Posted by Tom1 on Fri, 16 Nov 2018 11:57:49 GMT
View Forum Message <> Reply to Message

Hi,

IMO your default "CPU logical cores + 2" is a well considered compromise to keep the CPU
working full time without wasting much resources. No worries.

Page 25 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50570#msg_50570
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50570
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10485&goto=50571#msg_50571
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50571
https://www.ultimatepp.org/forums/index.php

Best regards,

Tom

Page 26 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

