
Subject: Core 2019
Posted by mirek on Fri, 07 Jun 2019 11:56:26 GMT
View Forum Message <> Reply to Message

I have made some substantial changes to Core memory allocator and index, improving
performance of some synthetic benchmarks.

Allocator now much better handles big blocks, which improves e.g. performance of adding ~20000
elements to Vector<int> 3 times. Also, memory pages of most categories can be now reused in
another category. We have now 3 categories of blocks <1KB, <64KB and <32MB/220MB (32 bit
cpu/64 bit cpu). MemoryTryRealloc is now properly implemented and used in library. mingw
performance is improved with TLS workaround.

sizeof(Index) is now 40 (was ~90). Adding elements to Index is now faster.

Frankly, in retrospective it was all mostly a lot of work for really small gains as all low-hanging
fruits were already picked years ago. But large blocks handling in allocator is quite nice
improvement...

Subject: Re: Core 2019
Posted by Novo on Fri, 07 Jun 2019 15:51:40 GMT
View Forum Message <> Reply to Message

Thanks a lot!

One of my data-intensive MT apps is running ~20% faster now.
It looks like it is using 4 to 6 times more RAM.
And I'm getting a timing report, which, probably, should be disabled:
TIMING Large Alloc 2 : 808.40 ms - 1.27 us (825.00 ms / 636928), min: 0.00 ns, max: 17.00
ms, nesting: 0 - 636928
TIMING Large Alloc : 1.97 s - 167.81 ns (2.27 s / 11734322), min: 0.00 ns, max: 28.00 ms,
nesting: 0 - 11734325

Subject: Re: Core 2019
Posted by mirek on Fri, 07 Jun 2019 16:01:39 GMT
View Forum Message <> Reply to Message

Novo wrote on Fri, 07 June 2019 17:51Thanks a lot!

One of my data-intensive MT apps is running ~20% faster now.
It looks like it is using 4 to 6 times more RAM.

Page 1 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51812#msg_51812
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51812
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51814#msg_51814
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51814
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51815#msg_51815
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51815
https://www.ultimatepp.org/forums/index.php

How do you measure it?

The new thing is that we now allocate 224MB chunks of _address space_. So virtual memory is
way up, but that is not what physical memory use is....

Quote:
And I'm getting a timing report, which, probably, should be disabled:
TIMING Large Alloc 2 : 808.40 ms - 1.27 us (825.00 ms / 636928), min: 0.00 ns, max: 17.00
ms, nesting: 0 - 636928
TIMING Large Alloc : 1.97 s - 167.81 ns (2.27 s / 11734322), min: 0.00 ns, max: 28.00 ms,
nesting: 0 - 11734325

Thanks!

Mirek

Subject: Re: Core 2019
Posted by Novo on Fri, 07 Jun 2019 21:00:17 GMT
View Forum Message <> Reply to Message

mirek wrote on Fri, 07 June 2019 12:01Novo wrote on Fri, 07 June 2019 17:51Thanks a lot!

One of my data-intensive MT apps is running ~20% faster now.
It looks like it is using 4 to 6 times more RAM.

How do you measure it?

The new thing is that we now allocate 224MB chunks of _address space_. So virtual memory is
way up, but that is not what physical memory use is....

I'm using old-fashioned top (a Linux tool). I was looking at %MEM and at RES.
To be precise, the difference is ~2.75 times and not 4 or 6 times as I mentioned before.
I measured the same app compiled against git:40cd0fd5e (svn://ultimatepp.org/upp/trunk@13354)
and git: 8e0f32d6262 (svn://ultimatepp.org/upp/trunk@13368)
With the old allocator I was getting 0.8% RAM max (~260Mb). The app was running for 292 s.
With the new one I got 2.2% RAM max (~714Mb). Now it takes 230 s. to run it. This is one minute
less, and that is cool.

A singly-threaded version of the same app has improved a little bit as well: 2428.33 s. vs 2491.37
s.
The difference is ~2.5%

Page 2 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51817#msg_51817
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51817
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 16:30:29 GMT
View Forum Message <> Reply to Message

I couldn't compile code with the flag .USEMALLOC defined. I'm getting this:

error: use of undeclared identifier 'MemoryTryRealloc'
I just wanted to compare the new U++ allocator with the standard one ...

Subject: Re: Core 2019
Posted by mirek on Sat, 08 Jun 2019 16:31:04 GMT
View Forum Message <> Reply to Message

This is definitely something to investigate...

The working hypothesis is that you are allocating some really large blocks (>10MB) and in
previous allocator, these were immediately unmapped back (and it was fast peak, so unnoticed
while watching top), while the new allocator keeps them for reuse and system has not swapped
them out yet. My experience is that the cuprit is usually a big StringStream.

We can test this. In HeapImp.h, there is HPAGE constant. This is the size of "master chunk" (in
4KB units) and also maximum size of block that allocator keeps for reuse. Try to change that to
something smaller, like 256 and retest...

Mirek

Subject: Re: Core 2019
Posted by mirek on Sat, 08 Jun 2019 16:40:45 GMT
View Forum Message <> Reply to Message

USEMALLOC fixed

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 17:44:30 GMT
View Forum Message <> Reply to Message

mirek wrote on Sat, 08 June 2019 12:40USEMALLOC fixed
For some weird reason I'm getting a linker error (full rebuild)

in function `Upp::sProfile(Upp::MemoryProfile const&)':
/home/ssg/dvlp/cpp/upp/git/uppsrc/CtrlLib/CtrlUtil.cpp:368: undefined reference to
`Upp::AsString(Upp::MemoryProfile const&)'
Configuration: Debug (Release is fine)
Flags: GUI .USEMALLOC

Page 3 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51826#msg_51826
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51826
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51827#msg_51827
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51827
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51828#msg_51828
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51828
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51829#msg_51829
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51829
https://www.ultimatepp.org/forums/index.php

I'm not getting any problems with linking when flags are "MT .USEMALLOC".
BLITZ is used in all cases.
This is weird.

Subject: Re: Core 2019
Posted by mirek on Sat, 08 Jun 2019 18:38:58 GMT
View Forum Message <> Reply to Message

Hopefully fixed.

Mirek

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 19:42:43 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 08 June 2019 12:30
I just wanted to compare the new U++ allocator with the standard one ...
So, StdAlloc-based MT version runs for 233 s. and it is using 1.6% RAM max (~541Mb).
It is somewhere in-between the new and the old U++ allocator.

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 19:45:01 GMT
View Forum Message <> Reply to Message

mirek wrote on Sat, 08 June 2019 14:38Hopefully fixed.

Mirek
Everything is fine now.

Thank you!

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 19:54:08 GMT
View Forum Message <> Reply to Message

mirek wrote on Sat, 08 June 2019 12:31
We can test this. In HeapImp.h, there is HPAGE constant. This is the size of "master chunk" (in
4KB units) and also maximum size of block that allocator keeps for reuse. Try to change that to
something smaller, like 256 and retest...

Mirek

Page 4 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51830#msg_51830
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51830
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51833#msg_51833
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51833
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51834#msg_51834
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51834
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51835#msg_51835
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51835
https://www.ultimatepp.org/forums/index.php

In case of HPAGE = 256 it is starting to use tens of gigabytes in just a few seconds ...

Subject: Re: Core 2019
Posted by Novo on Sat, 08 Jun 2019 20:06:49 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 08 June 2019 15:54
In case of HPAGE = 256 it is starting to use tens of gigabytes in just a few seconds ...
In case of HPAGE = 8192 it is using 2.0% RAM max (~646Mb) one one (some data is read from
disc into memory) run
and 2.2% RAM max (~714Mb) on another run (all data is cashed in memory).
Well, "top" is not the best tool to check memory usage.

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 08:03:29 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 08 June 2019 21:54mirek wrote on Sat, 08 June 2019 12:31
We can test this. In HeapImp.h, there is HPAGE constant. This is the size of "master chunk" (in
4KB units) and also maximum size of block that allocator keeps for reuse. Try to change that to
something smaller, like 256 and retest...

Mirek
In case of HPAGE = 256 it is starting to use tens of gigabytes in just a few seconds ...

Now that is an excelent clue :)

Found and fixed a bug (stupid one really). Can you test now please?

Mirek

Subject: Re: Core 2019
Posted by Novo on Sun, 09 Jun 2019 13:20:26 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 04:03Novo wrote on Sat, 08 June 2019 21:54mirek wrote on
Sat, 08 June 2019 12:31
We can test this. In HeapImp.h, there is HPAGE constant. This is the size of "master chunk" (in
4KB units) and also maximum size of block that allocator keeps for reuse. Try to change that to
something smaller, like 256 and retest...

Mirek
In case of HPAGE = 256 it is starting to use tens of gigabytes in just a few seconds ...

Page 5 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51836#msg_51836
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51836
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51837#msg_51837
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51837
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51840#msg_51840
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51840
https://www.ultimatepp.org/forums/index.php

Now that is an excelent clue :)

Found and fixed a bug (stupid one really). Can you test now please?

Mirek

HPAGE = 256
ram: 308 Mb, time: 253 s.

HPAGE = 7 * 8192
ram: 714 Mb, time: 232 s.

StdAlloc still remains the best choice for MT ...

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 14:33:37 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 09 June 2019 15:20mirek wrote on Sun, 09 June 2019 04:03Novo wrote on
Sat, 08 June 2019 21:54mirek wrote on Sat, 08 June 2019 12:31
We can test this. In HeapImp.h, there is HPAGE constant. This is the size of "master chunk" (in
4KB units) and also maximum size of block that allocator keeps for reuse. Try to change that to
something smaller, like 256 and retest...

Mirek
In case of HPAGE = 256 it is starting to use tens of gigabytes in just a few seconds ...

Now that is an excelent clue :)

Found and fixed a bug (stupid one really). Can you test now please?

Mirek

HPAGE = 256
ram: 308 Mb, time: 253 s.

OK, at least the bug was fixed... :)

Quote:

HPAGE = 7 * 8192
ram: 714 Mb, time: 232 s.

StdAlloc still remains the best choice for MT ...

Can you try some other value, like 4096 or 8192...

Page 6 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51844#msg_51844
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51844
https://www.ultimatepp.org/forums/index.php

Anyway, maybe this is really only misinterpreted reporting. The idea was that if I allocate a lot of
address space, it is not really in physical memory unless written to.

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 14:43:08 GMT
View Forum Message <> Reply to Message

Would it be possible to get peak memory profile?

Basically, you call PeakMemoryProfile at the start to activate it, then
RDUMP(PeakMemoryProfile()) at the end of app. (Slows down the allocator).

Mirek

Subject: Re: Core 2019
Posted by Novo on Sun, 09 Jun 2019 15:02:08 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 10:33
Can you try some other value, like 4096 or 8192...

Anyway, maybe this is really only misinterpreted reporting. The idea was that if I allocate a lot of
address space, it is not really in physical memory unless written to.

Mirek

HPAGE = 4096
mem: 680 Mb, time: 232 s.

HPAGE = 8192
mem: 777 Mb, time: 232 s.

If I remember correctly, some of the system allocation routines initialize allocated memory with
zeros even if you do not write there anything ...

Subject: Re: Core 2019
Posted by Novo on Sun, 09 Jun 2019 15:15:19 GMT
View Forum Message <> Reply to Message

I hacked your TIMING macro and made a similar RMEMUSE one:

Page 7 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51845#msg_51845
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51845
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51846#msg_51846
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51846
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51847#msg_51847
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51847
https://www.ultimatepp.org/forums/index.php

namespace Upp {
	
struct MemInspector {
protected:
	static bool active;

	const char *name;
	int call_count;
	int min_mem;
	int max_mem;
	int max_nesting;
	int all_count;
	StaticMutex mutex;

public:
	MemInspector(const char *name = NULL); // Not String !!!
	~MemInspector();

	void Add(int mem, int nesting);

	String Dump();

	class Routine {
	public:
		Routine(MemInspector& stat, int& nesting)
		: nesting(nesting), stat(stat) {
			++nesting;
		}

		~Routine() {
			--nesting;
			int mem = MemoryUsedKb();
			stat.Add(mem, nesting);
		}

	protected:
		int& nesting;
		MemInspector& stat;
	};

	static void Activate(bool b) { active = b; }
};

bool MemInspector::active = true;

MemInspector::MemInspector(const char *_name) {
	name = _name ? _name : "";

Page 8 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	all_count = call_count = max_nesting = min_mem = max_mem = 0;
}

MemInspector::~MemInspector() {
	Mutex::Lock __(mutex);
	StdLog() << Dump() << "\r\n";
}

void MemInspector::Add(int mem, int nesting)
{
	// mem = MemoryUsedKb() - mem;
	Mutex::Lock __(mutex);
	if(!active) return;
	all_count++;
	if(nesting > max_nesting)
		max_nesting = nesting;
	if(nesting == 0) {
		if(call_count++ == 0)
			min_mem = max_mem = mem;
		else {
			if(mem < min_mem)
				min_mem = mem;
			if(mem > max_mem)
				max_mem = mem;
		}
	}
}

String MemInspector::Dump() {
	Mutex::Lock __(mutex);
	String s = Sprintf("MEMUSE %-15s: ", name);
	if(call_count == 0)
		return s + "No active hit";
	return s
		 << "min: " << min_mem
		 << ", max: " << max_mem
		 << Sprintf(", nesting: %d - %d", max_nesting, all_count);
}

}

#define RMEMUSE(x) \
	static UPP::MemInspector COMBINE(sMemStat, __LINE__)(x); \
	static thread_local int COMBINE(sMemStatNesting, __LINE__); \
	UPP::MemInspector::Routine COMBINE(sMemStatR, __LINE__)(COMBINE(sMemStat,
__LINE__), COMBINE(sMemStatNesting, __LINE__))

Page 9 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

What I'm getting in case of HPAGE = 7 * 8192 is
TIMING Chunk : 4108.80 s - 22.66 ms (4108.80 s / 181363), min: 1.00 ms, max: 1.24 s ,
nesting: 0 - 181363
MEMUSE Chunk : min: 30844, max: 341052, nesting: 0 - 181363
TIMING Read Data : 228.28 s - 228.28 s (228.28 s / 1), min: 228.28 s , max: 228.28 s ,
nesting: 0 - 1

top is saying max used memory (RES) is ~771 Mb.

Subject: Re: Core 2019
Posted by Novo on Sun, 09 Jun 2019 15:34:24 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 10:43Would it be possible to get peak memory profile?

Basically, you call PeakMemoryProfile at the start to activate it, then
RDUMP(PeakMemoryProfile()) at the end of app. (Slows down the allocator).

Mirek
I'm calling PeakMemoryProfile(); before CoWork is created and RDUMP(*PeakMemoryProfile());
after it is destroyed.
*PeakMemoryProfile() = Memory peak 328920
 32 B, 13 allocated (0 KB), 113 fragments (3 KB)
 64 B, 8 allocated (0 KB), 55 fragments (3 KB)
 96 B, 6 allocated (0 KB), 36 fragments (3 KB)
 128 B, 3 allocated (0 KB), 28 fragments (3 KB)
 160 B, 3 allocated (0 KB), 22 fragments (3 KB)
 192 B, 2 allocated (0 KB), 19 fragments (3 KB)
 224 B, 3 allocated (0 KB), 15 fragments (3 KB)
 256 B, 2 allocated (0 KB), 13 fragments (3 KB)
 288 B, 2 allocated (0 KB), 12 fragments (3 KB)
 320 B, 2 allocated (0 KB), 10 fragments (3 KB)
 352 B, 1 allocated (0 KB), 10 fragments (3 KB)
 384 B, 2 allocated (0 KB), 8 fragments (3 KB)
 448 B, 2 allocated (0 KB), 7 fragments (3 KB)
 576 B, 4 allocated (2 KB), 3 fragments (1 KB)
 672 B, 3 allocated (1 KB), 3 fragments (1 KB)
 800 B, 2 allocated (1 KB), 3 fragments (2 KB)
 992 B, 3 allocated (2 KB), 1 fragments (0 KB)
 TOTAL, 61 allocated (15 KB), 358 fragments (50 KB)
Empty 4KB pages 0 (0 KB)
Large block count 9, total size 119 KB
Large fragments count 5, total size 71 KB
Huge block count 80, total size 1779376 KB
Sys block count 0, total size 0 KB
224MB master blocks 4

Page 10 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51848#msg_51848
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51848
https://www.ultimatepp.org/forums/index.php

Large fragments:
1 KB: 1
8 KB: 1
17.25 KB: 1
22 KB: 1
23.5 KB: 1

Huge fragments:
8 KB: 1
16 KB: 1
20 KB: 3
32 KB: 5
36 KB: 2
40 KB: 1
44 KB: 1
52 KB: 1
64 KB: 20
68 KB: 1
80 KB: 6
92 KB: 2
120 KB: 1
128 KB: 1
144 KB: 1
156 KB: 1
164 KB: 1
180 KB: 2
188 KB: 2
192 KB: 3
196 KB: 1
204 KB: 1
248 KB: 1
252 KB: 1
272 KB: 2
276 KB: 1
284 KB: 1
288 KB: 1
296 KB: 2
304 KB: 1
320 KB: 1
328 KB: 1
348 KB: 1
364 KB: 1
384 KB: 1
396 KB: 2
412 KB: 1
440 KB: 1
464 KB: 1
468 KB: 1

Page 11 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

484 KB: 1
500 KB: 1
504 KB: 1
512 KB: 1
520 KB: 1
560 KB: 2
564 KB: 1
568 KB: 1
576 KB: 1
580 KB: 1
612 KB: 1
616 KB: 1
620 KB: 1
640 KB: 1
652 KB: 2
696 KB: 1
700 KB: 1
708 KB: 1
740 KB: 1
760 KB: 1
780 KB: 1
784 KB: 1
796 KB: 1
916 KB: 1
944 KB: 1
972 KB: 1
1044 KB: 1
1084 KB: 1
1088 KB: 1
1148 KB: 1
1184 KB: 1
1200 KB: 1
1212 KB: 1
1216 KB: 1
1272 KB: 1
1280 KB: 1
1300 KB: 1
1364 KB: 1
1464 KB: 1
1512 KB: 1
1616 KB: 1
1716 KB: 1
1720 KB: 1
1920 KB: 1
1996 KB: 1
2220 KB: 1
2280 KB: 1
2552 KB: 1

Page 12 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

2576 KB: 1
2596 KB: 1
2804 KB: 1
2864 KB: 1
3080 KB: 1
3324 KB: 1
3420 KB: 1
3516 KB: 3
3580 KB: 6
3596 KB: 1
3644 KB: 1
3648 KB: 1
3916 KB: 1
4408 KB: 1
4452 KB: 1
4720 KB: 1
5564 KB: 1
5632 KB: 1
6996 KB: 1
7036 KB: 1
7100 KB: 1
7280 KB: 2
7632 KB: 1
7848 KB: 1
7864 KB: 1
8344 KB: 1
8448 KB: 1
8632 KB: 1
8820 KB: 1
8968 KB: 1
9124 KB: 1
9296 KB: 1
9440 KB: 1
9880 KB: 1
10612 KB: 1
10768 KB: 1
11136 KB: 1
11188 KB: 1
11420 KB: 1
13572 KB: 1
14304 KB: 1
14988 KB: 1
15168 KB: 1
15576 KB: 1
15924 KB: 1
16040 KB: 1
18012 KB: 1
19204 KB: 1

Page 13 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

20108 KB: 1
20396 KB: 1
55160 KB: 1

top is saying that app is using 855 Mb max ...

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 16:51:22 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 09 June 2019 17:02
If I remember correctly, some of the system allocation routines initialize allocated memory with
zeros even if you do not write there anything ...

They can delay that to the moment the page is allocated in physical memory.

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 16:54:01 GMT
View Forum Message <> Reply to Message

Looking at peak profile, it looks like there are very little "small" blocks and most of memory is in
those 80 "huge" (that means >64KB) blocks.

Can that be correct?

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 18:56:03 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 09 June 2019 17:15I hacked your TIMING macro and made a similar
RMEMUSE one:

There is also

int MemoryUsedKbMax();

anyway, both MemoryUsedKb and this one have one disadvantage - they only count active
blocks, so if fragmentation is high, it is not accounted for.

Page 14 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51849#msg_51849
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51849
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51850#msg_51850
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51850
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51854#msg_51854
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51854
https://www.ultimatepp.org/forums/index.php

That said, it looks like the fragmentation is the real culprit here. It looks like we have 300MB of
active memory and 500MB in memory fragments. Looks like stdalloc fights with that too, with little
bit better success.

I would like to get a list of allocations your code is doing so that I can hopefully replicate it and
investigate whether there can be anything done to reduce the fragmentation.... I will post
temporary changes to get the log tomorrow, if you are willing to help.

Mirek

Subject: Re: Core 2019
Posted by Novo on Sun, 09 Jun 2019 19:39:32 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 12:54Looking at peak profile, it looks like there are very little
"small" blocks and most of memory is in those 80 "huge" (that means >64KB) blocks.

Can that be correct?

Mirek
It is hard to tell. I'm not controlling that.
Another problem is that all allocations/deallocations happen in CoWork's threads. I cannot call
RDUMP(*PeakMemoryProfile()) inside of CoWork because it will be called at least 181363 times
...

The app is parsing Wikipedia XML dump. It is decompressing a bz2 archive and parsing chunks of
XML. After that my own parser is parsing Mediawiki text.
As a first pass my parser is building a list of tokens organized as a Vector<> (I'm not inserting in
the middle :))
My parser is avoiding memory allocation at all possible costs. I'm calling Vector::SetCountR and
reusing these vectors. When I need to deal with String I'm using my own not owning data string
class.
Unfortunately, I cannot control memory allocation with XmlParser. I have to relay on the default
allocator.

Ideally, I'd love to see U++ allocator designed like this.
Related papers:
https://people.cs.umass.edu/~emery/pubs/berger-pldi2001.pdf
https://erdani.com/publications/cuj-2005-12.pdf
 https://accu.org/content/conf2008/Alexandrescu-memory-alloca tion.screen.pdf

It doesn't have to be a complete implementation of everything. I just would like to be able plug into
U++'s allocator in a similar fashion and extend/tune it.

mirek wrote on Sun, 09 June 2019 14:56I would like to get a list of allocations your code is doing
so that I can hopefully replicate it and investigate whether there can be anything done to reduce

Page 15 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51855#msg_51855
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51855
https://www.ultimatepp.org/forums/index.php

the fragmentation.... I will post temporary changes to get the log tomorrow, if you are willing to
help.

Yes, I'm willing to help. I even willing to implement this policy-based allocator. I just need the
ability to integrate it into U++. It doesn't have to be a part of U++.

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 21:11:41 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 09 June 2019 21:39mirek wrote on Sun, 09 June 2019 12:54Looking at peak
profile, it looks like there are very little "small" blocks and most of memory is in those 80 "huge"
(that means >64KB) blocks.

Can that be correct?

Mirek
It is hard to tell. I'm not controlling that.
Another problem is that all allocations/deallocations happen in CoWork's threads. I cannot call
RDUMP(*PeakMemoryProfile()) inside of CoWork because it will be called at least 181363 times
...

Why would you want to? Peak is really peak, it is profile at the moment when there is maximum
memory use.

One caveat about profile is that it is only profile of current thread for small and large blocks. But
our problem is with huge blocks anyway.

Quote:
The app is parsing Wikipedia XML dump. It is decompressing a bz2 archive and parsing chunks of
XML. After that my own parser is parsing Mediawiki text.
As a first pass my parser is building a list of tokens organized as a Vector<> (I'm not inserting in
the middle :))
My parser is avoiding memory allocation at all possible costs. I'm calling Vector::SetCountR and
reusing these vectors. When I need to deal with String I'm using my own not owning data string
class.

Well, maybe there can also be an interference with MemoryTryRealloc (as those Vectors grow).
Perhaps you can test what happens if

bool MemoryTryRealloc(void *ptr, size_t& newsize) {
	return false; // (((dword)(uintptr_t)ptr) & 16) && MemoryTryRealloc__(ptr, newsize);
}

Page 16 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51856#msg_51856
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51856
https://www.ultimatepp.org/forums/index.php

Quote:
Unfortunately, I cannot control memory allocation with XmlParser. I have to relay on the default
allocator.

There are not many... BTW, are you parsing memory - XmlParser(const char *), or streams -
XmlParser(Stream& in) ?

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 09 Jun 2019 21:25:20 GMT
View Forum Message <> Reply to Message

Here is the code for logging all huge allocations (replace in Core/hheap.cpp):

void *Heap::HugeAlloc(size_t count) // count in 4kb pages
{
	ASSERT(count);

#ifdef LSTAT
	if(count < 65536)
		hstat[count]++;
#endif

	huge_4KB_count += count;
	
	if(huge_4KB_count > huge_4KB_count_max) {
		huge_4KB_count_max = huge_4KB_count;
		if(MemoryUsedKb() > sKBLimit)
			Panic("MemoryLimitKb breached!");
		if(sPeak)
			Make(*sPeak);
	}

	if(!D::freelist[0]->next) { // initialization
		for(int i = 0; i < 2; i++)
			Dbl_Self(D::freelist[i]);
	}
		
	if(count > HPAGE) { // we are wasting 4KB to store just 4 bytes here, but this is >32MB after all..
		LTIMING("SysAlloc");
		byte *sysblk = (byte *)SysAllocRaw((count + 1) * 4096, 0);

Page 17 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51857#msg_51857
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51857
https://www.ultimatepp.org/forums/index.php

		BlkHeader *h = (BlkHeader *)(sysblk + 4096);
		h->size = 0;
		*((size_t *)sysblk) = count;
		sys_count++;
		sys_size += 4096 * count;
		return h;
	}
	
	LTIMING("Huge Alloc");

	word wcount = (word)count;
	
	if(16 * free_4KB > huge_4KB_count) // keep number of free 4KB blocks in check
		FreeSmallEmpty(INT_MAX, int(free_4KB - huge_4KB_count / 32));
	
	for(int pass = 0; pass < 2; pass++) {
		for(int i = count >= 16; i < 2; i++) {
			BlkHeader *l = D::freelist[i];
			BlkHeader *h = l->next;
			while(h != l) {
				word sz = h->GetSize();
				if(sz >= count) {
					void *ptr = MakeAlloc(h, wcount);
					if(count > 16)
						RLOG("HugeAlloc " << asString(ptr) << ", size: " << asString(count));
					return ptr;
				}
				h = h->next;
			}
		}

		if(!FreeSmallEmpty(wcount, INT_MAX)) { // try to coalesce 4KB small free blocks back to huge
storage
			void *ptr = SysAllocRaw(HPAGE * 4096, 0);
			HugePage *pg = (HugePage *)MemoryAllocPermanent(sizeof(HugePage));
			pg->page = ptr;
			pg->next = huge_pages;
			huge_pages = pg;
			AddChunk((BlkHeader *)ptr, HPAGE); // failed, add 32MB from the system
			huge_chunks++;
		}
	}
	Panic("Out of memory");
	return NULL;
}

int Heap::HugeFree(void *ptr)
{

Page 18 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	BlkHeader *h = (BlkHeader *)ptr;
	if(h->size == 0) {
		LTIMING("Sys Free");
		byte *sysblk = (byte *)h - 4096;
		size_t count = *((size_t *)sysblk);
		SysFreeRaw(sysblk, (count + 1) * 4096);
		huge_4KB_count -= count;
		sys_count--;
		sys_size -= 4096 * count;
		return 0;
	}
	LTIMING("Huge Free");
	if(h->GetSize() > 16)
		RLOG("HugeFree " << asString(ptr) << ", size: " << asString(h->GetSize()));
	huge_4KB_count -= h->GetSize();
	return BlkHeap::Free(h)->GetSize();
}

bool Heap::HugeTryRealloc(void *ptr, size_t count)
{
	bool b = count <= HPAGE && BlkHeap::TryRealloc(ptr, count, huge_4KB_count);
	if(b)
		RLOG("HugeRealloc " << asString(ptr) << ", size: " << asString(count));
	return b;
}

(please test with active MemoryTryRealloc)

Subject: Re: Core 2019
Posted by mirek on Mon, 10 Jun 2019 15:27:57 GMT
View Forum Message <> Reply to Message

I have tried to improve fragmentation using approximate best fit, hopefully this will help a bit... (in
trunk)

Subject: Re: Core 2019
Posted by Novo on Mon, 10 Jun 2019 16:01:33 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 10 June 2019 11:27I have tried to improve fragmentation using approximate
best fit, hopefully this will help a bit... (in trunk)
Thanks!
mem: 400 Mb, time: 230 s.
This is a huge improvement.

Page 19 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51860#msg_51860
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51860
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51862#msg_51862
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51862
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by mirek on Mon, 10 Jun 2019 16:17:38 GMT
View Forum Message <> Reply to Message

Novo wrote on Mon, 10 June 2019 18:01mirek wrote on Mon, 10 June 2019 11:27I have tried to
improve fragmentation using approximate best fit, hopefully this will help a bit... (in trunk)
Thanks!
mem: 400 Mb, time: 230 s.
This is a huge improvement.

Cool. So I guess issue solved and we do not need to worry about other tests?

Mirek

Subject: Re: Core 2019
Posted by Novo on Mon, 10 Jun 2019 16:18:02 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 17:11BTW, are you parsing memory - XmlParser(const char *),
or streams - XmlParser(Stream& in) ?

Stream. bz2::DecompressStream.
I guess that XmlParser is responsible for fragmentation.

Subject: Re: Core 2019
Posted by Novo on Mon, 10 Jun 2019 16:21:44 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 10 June 2019 12:17
Cool. So I guess issue solved and we do not need to worry about other tests?

I'll try to run other tests and see what happens ...

Subject: Re: Core 2019
Posted by Novo on Mon, 10 Jun 2019 16:34:58 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 17:11
Well, maybe there can also be an interference with MemoryTryRealloc (as those Vectors grow).
Perhaps you can test what happens if

Page 20 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51863#msg_51863
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51863
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51864#msg_51864
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51864
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51865#msg_51865
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51865
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51866#msg_51866
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51866
https://www.ultimatepp.org/forums/index.php

bool MemoryTryRealloc(void *ptr, size_t& newsize) {
	return false; // (((dword)(uintptr_t)ptr) & 16) && MemoryTryRealloc__(ptr, newsize);
}

This doesn't affect anything.

Subject: Re: Core 2019
Posted by Novo on Mon, 10 Jun 2019 16:45:35 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 09 June 2019 17:25Here is the code for logging all huge allocations (replace
in Core/hheap.cpp):

This code is crashing with the latest trunk.
I guess we can stop at this point.

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 03:43:00 GMT
View Forum Message <> Reply to Message

Update.

I changed my app. Now it is doing a bunch of string manipulations (mostly concatenations)

Results:
U++:
time: 234s, mem is growing to 4.4Gb and it is not going down till the very end.

glibc:
Default settings (8-core CPU, CoWork pool has 18 threads):
time: 239s, mem max is 6.5Gb down to 3.6Gb

export MALLOC_ARENA_MAX=16
time: 239s, mem max is 4.2Gb down to 2.8Gb

export MALLOC_ARENA_MAX=8
time: 244s, mem max is 4.0Gb down to 1.3Gb

Conclusion:
glibc allocator is more efficient with a little bit of manual tuning. Difference in performance is not
that signifficant. Cannot tell anything about Windows.

Page 21 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51867#msg_51867
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51867
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51923#msg_51923
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51923
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 04:14:59 GMT
View Forum Message <> Reply to Message

It looks like performance of the glibc allocator depends on a state of the system. Got new
interesting results:

export MALLOC_ARENA_MAX=20
time: 239s, mem max is 3.9Gb down to 0.7Gb

Subject: Re: Core 2019
Posted by mirek on Fri, 21 Jun 2019 07:16:15 GMT
View Forum Message <> Reply to Message

I think you cannot deduce too much about efficiency looking at "down" number. That will depend a
lot on overall load of system, more the load, less this number as system will page out unused
pages from your apps address space. So the current philosophy of U++ allocator is that this does
not matter.

Further explanation. The function that any allocator is using to obtain address space from system
is mmap and there is munmap that returns address space to system. Normally there is a threshold
- if block is too big, it allocation is simply handled by mmap / munmap calls, meaning it is returned
to the system at MemoryFree. If it is less than threshold, bigger chung is mmaped from the
system and then divided to smaller chunks (somehow).

Now what is different is that standard GCC allocator has thershold at 4MB. U++ allocatar at
224MB. In practive, this means that if you alloc / free 5MB block in std, it gets released back to
system immediately. With U++, blocks up to 224 MB are not returned to the system immediately.
If they are really unused, this just means that system will retrieve them when there is a need for
more physical memory.

Mirek

Subject: Re: Core 2019
Posted by mirek on Fri, 21 Jun 2019 07:23:53 GMT
View Forum Message <> Reply to Message

Anyway, peak and final memory profiles would be nice to know... :)

(Although one problem is that only calling thread's memory is in the profile).

Subject: Re: Core 2019

Page 22 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51924#msg_51924
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51924
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51925#msg_51925
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51925
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51926#msg_51926
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51926
https://www.ultimatepp.org/forums/index.php

Posted by Novo on Fri, 21 Jun 2019 15:59:14 GMT
View Forum Message <> Reply to Message

mirek wrote on Fri, 21 June 2019 03:16
Now what is different is that standard GCC allocator has thershold at 4MB. U++ allocatar at
224MB. In practive, this means that if you alloc / free 5MB block in std, it gets released back to
system immediately. With U++, blocks up to 224 MB are not returned to the system immediately.
If they are really unused, this just means that system will retrieve them when there is a need for
more physical memory.

Mirek

This info doesn't match what I'm reading in the docs I posted above.

 The lower limit for this parameter is 0. The upper limit is
 DEFAULT_MMAP_THRESHOLD_MAX: 512*1024 on 32-bit systems or
 4*1024*1024*sizeof(long) on 64-bit systems.

 Note: Nowadays, glibc uses a dynamic mmap threshold by
 default. The initial value of the threshold is 128*1024, but
 when blocks larger than the current threshold and less than or
 equal to DEFAULT_MMAP_THRESHOLD_MAX are freed, the threshold
 is adjusted upward to the size of the freed block. When
 dynamic mmap thresholding is in effect, the threshold for
 trimming the heap is also dynamically adjusted to be twice the
 dynamic mmap threshold. Dynamic adjustment of the mmap
 threshold is disabled if any of the M_TRIM_THRESHOLD,
 M_TOP_PAD, M_MMAP_THRESHOLD, or M_MMAP_MAX parameters is set.

So, the old allocator on 64-bit systems had threshold 32Mb (4*1024*1024*sizeof(long)).
In the new one it is determined dynamically. Initial value is 128Kb.

I traced my app with a tool which intercepts all malloc/free calls. I know exactly what is stressing
the allocator :roll:
Memory block sizes:

File Attachments
1) Screenshot_2019-06-21_11-51-00.png, downloaded 764 times

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 16:01:35 GMT
View Forum Message <> Reply to Message

Memory consumption (actual, total of all malloc/free):

Page 23 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51931#msg_51931
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51931
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5861
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51932#msg_51932
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51932
https://www.ultimatepp.org/forums/index.php

File Attachments
1) Screenshot_2019-06-21_11-58-58.png, downloaded 669 times

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 16:10:34 GMT
View Forum Message <> Reply to Message

Unfortunately, I couldn't find a decent tool to track real amount of system memory (mmaped) used
by an app.
A chart similar to one above would be very helpful, otherwise I can just compare most notable
values.

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 17:58:55 GMT
View Forum Message <> Reply to Message

mirek wrote on Fri, 21 June 2019 03:23Anyway, peak and final memory profiles would be nice to
know... :)

(Although one problem is that only calling thread's memory is in the profile).
I've attached a profile ...

File Attachments
1) wiki_infobox_mt.log, downloaded 304 times

Subject: Re: Core 2019
Posted by Novo on Fri, 21 Jun 2019 18:28:14 GMT
View Forum Message <> Reply to Message

My version of libc:

$ /lib/x86_64-linux-gnu/libc.so.6
GNU C Library (Ubuntu GLIBC 2.29-0ubuntu2) stable release version 2.29.

Subject: Re: Core 2019
Posted by Novo on Sat, 22 Jun 2019 00:51:03 GMT
View Forum Message <> Reply to Message

U++, RSS, collected as "top -d 0.5".

Page 24 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5862
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51933#msg_51933
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51933
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51934#msg_51934
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51934
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5863
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51935#msg_51935
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51935
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51936#msg_51936
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51936
https://www.ultimatepp.org/forums/index.php

File Attachments
1) upp.png, downloaded 868 times

Subject: Re: Core 2019
Posted by Novo on Sat, 22 Jun 2019 00:53:47 GMT
View Forum Message <> Reply to Message

glibc, RSS, collected the same way.

File Attachments
1) glibc.png, downloaded 753 times

Subject: Re: Core 2019
Posted by mirek on Sat, 22 Jun 2019 08:23:59 GMT
View Forum Message <> Reply to Message

Well, from what I see, the real difference is that U++ "keeps" the address space...

Maybe you can strace both allocators and grep for mmap / munmap?

Also, profile after the CoWork would be nice to know.

Mirek

Subject: Re: Core 2019
Posted by Novo on Sat, 22 Jun 2019 15:49:55 GMT
View Forum Message <> Reply to Message

mirek wrote on Sat, 22 June 2019 04:23Well, from what I see, the real difference is that U++
"keeps" the address space...

Maybe you can strace both allocators and grep for mmap / munmap?

Also, profile after the CoWork would be nice to know.

Mirek

Attached.
Just mmap and munmap do not tell much.

Page 25 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5864
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51937#msg_51937
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51937
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5865
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51938#msg_51938
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51938
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51939#msg_51939
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51939
https://www.ultimatepp.org/forums/index.php

glibc calls brk a lot as well.
Profile after the CoWork was posted in this message.

File Attachments
1) strace.01.zip, downloaded 280 times

Subject: Re: Core 2019
Posted by mirek on Sat, 22 Jun 2019 20:22:11 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 22 June 2019 17:49
Profile after the CoWork was posted in this message.

I believe that is just peak profile, but I might be looking at it wrong.

strace logs seem weird a bit - I do not see enough allocations (either way) for 4GB.

Subject: Re: Core 2019
Posted by Novo on Sat, 22 Jun 2019 21:44:33 GMT
View Forum Message <> Reply to Message

mirek wrote on Sat, 22 June 2019 16:22
I believe that is just peak profile, but I might be looking at it wrong.

What is "Profile after the CoWork"? I do know only about MemoryUsedKb(),
MemoryUsedKbMax(), PeakMemoryProfile() ...
In this log-file all three of them are called after CoWork.

mirek wrote on Sat, 22 June 2019 16:22
strace logs seem weird a bit - I do not see enough allocations (either way) for 4GB.

My bad. I didn't follow the threads ...
New logs are attached.

File Attachments
1) 02.zip, downloaded 288 times

Subject: Re: Core 2019
Posted by mirek on Sun, 23 Jun 2019 06:21:13 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 22 June 2019 23:44mirek wrote on Sat, 22 June 2019 16:22
I believe that is just peak profile, but I might be looking at it wrong.

Page 26 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5866
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51940#msg_51940
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51940
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51941#msg_51941
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51941
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5867
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51942#msg_51942
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51942
https://www.ultimatepp.org/forums/index.php

What is "Profile after the CoWork"? I do know only about MemoryUsedKb(),
MemoryUsedKbMax(), PeakMemoryProfile() ...
In this log-file all three of them are called after CoWork.

"MemoryProfile()" :)

The differnce is that PeakMemoryProfile returns snapshot at point where maximum memory is
allocated, while "MemoryProfile" returns current status.

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 23 Jun 2019 07:55:55 GMT
View Forum Message <> Reply to Message

Novo wrote on Sat, 22 June 2019 23:44
My bad. I didn't follow the threads ...
New logs are attached.

Well, GCC definitely unmaps regions before mapping them back again, so the original hypothesis
holds.

Now the interesting question is "are we doing something wrong?". Perhaps we do... Maybe
224MB is too big chunk and it is true that it will waste swap space....

Mirek

Subject: Re: Core 2019
Posted by mirek on Sun, 23 Jun 2019 08:19:53 GMT
View Forum Message <> Reply to Message

It would probably be worth to experiment with HPAGE constant... Can be any number >16.

Mirek

Subject: Re: Core 2019
Posted by Novo on Sun, 23 Jun 2019 19:26:26 GMT

Page 27 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51943#msg_51943
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51943
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51944#msg_51944
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51944
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

mirek wrote on Sun, 23 June 2019 02:21
"MemoryProfile()" :)

Attached :blush:

File Attachments
1) wiki_infobox_mt.log, downloaded 278 times

Subject: Re: Core 2019
Posted by Novo on Mon, 24 Jun 2019 04:13:11 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 23 June 2019 04:19It would probably be worth to experiment with HPAGE
constant... Can be any number >16.

I'm afraid I cannot afford to spend time on U++'s allocator anymore.
I'm switching to the glibc's one for the time being.
It would be great to see jemalloc and tcmalloc integrated into U++ because they are supposed to
be better at avoiding fragmentation.

Subject: Re: Core 2019
Posted by mirek on Mon, 24 Jun 2019 07:22:47 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 23 June 2019 21:26mirek wrote on Sun, 23 June 2019 02:21
"MemoryProfile()" :)

Attached :blush:

Huge block count 4, total size 1951 KB
Huge fragments count 424, total size 4810724 KB

Basically means that all the memory is really freed, as expected. Fragments list also reveals that
fragmentation is not really too bad (a lot of big blocks).

Based on this, I do not see any defect or deficiency, except the choosen one (keep the memory).

Mirek

Subject: Re: Core 2019
Posted by Novo on Mon, 24 Jun 2019 15:36:02 GMT
View Forum Message <> Reply to Message

Page 28 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51946#msg_51946
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51946
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5868
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51947#msg_51947
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51947
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51949#msg_51949
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51949
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51950#msg_51950
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51950
https://www.ultimatepp.org/forums/index.php

mirek wrote on Mon, 24 June 2019 03:22
Based on this, I do not see any defect or deficiency, except the choosen one (keep the memory).

Well, I do not think that taking from the system 4.6Gb when the app is allocating ~400Mb is
acceptable. 8)
Default behavior of glibc's allocator is optimized for huge enterprise-level apps, but with some
manual tweaking it performs fine with small apps. jemalloc would perform even better, I believe.

Subject: Re: Core 2019
Posted by mirek on Mon, 24 Jun 2019 16:42:23 GMT
View Forum Message <> Reply to Message

Novo wrote on Mon, 24 June 2019 17:36mirek wrote on Mon, 24 June 2019 03:22
Based on this, I do not see any defect or deficiency, except the choosen one (keep the memory).

Well, I do not think that taking from the system 4.6Gb when the app is allocating ~400Mb is
acceptable. 8)
Default behavior of glibc's allocator is optimized for huge enterprise-level apps, but with some
manual tweaking it performs fine with small apps. jemalloc would perform even better, I believe.

Well, app actually IS allocating ~4.5 GB at the peak, that is what all indicators show - or have I got
that wrong?

So it is really a question of priorities. Do we want to unmap that memory or keep it for the future
use as mmap/munmap are quite expensive calls? This was the question I have asked and at that
time the answer was: "we want to keep it". Now I am not so sure... :)

Looks like we need MemoryOptions and/or MemoryShrink...

Anyway, back to drawing board...

Mirek

Subject: Re: Core 2019
Posted by Novo on Mon, 24 Jun 2019 17:36:24 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 24 June 2019 12:42
Well, app actually IS allocating ~4.5 GB at the peak, that is what all indicators show - or have I got
that wrong?

Top with default options gives me 4.6GB, 4.5GB or 4.4GB. It depends on a run. :roll:

Page 29 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51951#msg_51951
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51951
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51952#msg_51952
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51952
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by mirek on Mon, 24 Jun 2019 18:15:46 GMT
View Forum Message <> Reply to Message

Novo wrote on Mon, 24 June 2019 19:36mirek wrote on Mon, 24 June 2019 12:42
Well, app actually IS allocating ~4.5 GB at the peak, that is what all indicators show - or have I got
that wrong?

Top with default options gives me 4.6GB, 4.5GB or 4.4GB. It depends on a run. :roll:

Of course, as it is MT and allocation/deallocation order is not fixed...

Subject: Re: Core 2019
Posted by mirek on Wed, 26 Jun 2019 06:52:36 GMT
View Forum Message <> Reply to Message

Novo wrote on Mon, 24 June 2019 06:13mirek wrote on Sun, 23 June 2019 04:19It would
probably be worth to experiment with HPAGE constant... Can be any number >16.

I'm afraid I cannot afford to spend time on U++'s allocator anymore.
I'm switching to the glibc's one for the time being.

Redesign finished. Address space is now returned to OS when possible.

There is now MemorySetOptions to finetune behaviour. There are 4 parameters, low values
should in general result in slower allocator with less memory consumption...

Mirek

Subject: Re: Core 2019
Posted by mirek on Thu, 27 Jun 2019 07:44:22 GMT
View Forum Message <> Reply to Message

In addtion to USEMALLOC there is now HEAPOVERRIDE flag that kicks out all Memory*
definitions, allowing you to replace the whole allocator with something else than malloc.

Subject: Re: Core 2019
Posted by mirek on Fri, 28 Jun 2019 07:09:57 GMT
View Forum Message <> Reply to Message

I have got another idea. In order to reproduce allocation pattern, there is now

Page 30 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51953#msg_51953
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51953
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51956#msg_51956
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51956
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51963#msg_51963
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51963
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51968#msg_51968
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51968
https://www.ultimatepp.org/forums/index.php

HEAPLOG

flag. If in main config, heap will produce a log of allocation (to heap.log file at exe dir) so that it can
be reproduced and optimized.

heap.log is long, but should be highly compressible.

Subject: Re: Core 2019
Posted by Tom1 on Fri, 28 Jun 2019 14:56:41 GMT
View Forum Message <> Reply to Message

Hi Mirek,

My application started to crash maybe about a week or so ago after updating uppsrc from SVN.
Now I got some time to investigate and it seems my app:

- Crashes strangely in different places with current SVN if I compile MSBT19x64 Release
- Works OK with current SVN when compiling with MSBT17x64 Debug or MSBT19x64 Debug
- Works OK with current SVN if I use flag USEMALLOC and compile with MSBT19x64 Release
- Works OK with SVN 13068 compiling with MSBT17x64 Release

Any idea what's wrong? Is it related to the new allocator?

I added some RLOGs and found that it might crash even somewhere in BufferPainter during
Stroke... (did not track it all the way down though). Debugger does not help as it does not crash
when compiled in debug mode.

Best regards,

Tom

Subject: Re: Core 2019
Posted by mirek on Fri, 28 Jun 2019 15:30:24 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Fri, 28 June 2019 16:56Hi Mirek,

My application started to crash maybe about a week or so ago after updating uppsrc from SVN.
Now I got some time to investigate and it seems my app:

- Crashes strangely in different places with current SVN if I compile MSBT19x64 Release
- Works OK with current SVN when compiling with MSBT17x64 Debug or MSBT19x64 Debug
- Works OK with current SVN if I use flag USEMALLOC and compile with MSBT19x64 Release
- Works OK with SVN 13068 compiling with MSBT17x64 Release

Page 31 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51970#msg_51970
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51970
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51971#msg_51971
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51971
https://www.ultimatepp.org/forums/index.php

Any idea what's wrong? Is it related to the new allocator?

I added some RLOGs and found that it might crash even somewhere in BufferPainter during
Stroke... (did not track it all the way down though). Debugger does not help as it does not crash
when compiled in debug mode.

Best regards,

Tom

Probably allocator, thanks for reporting. It is under active development. It would be worth quoting
the revision tested - even today I have fixed / changed some things...

Mirek

Subject: Re: Core 2019
Posted by mirek on Fri, 28 Jun 2019 15:31:52 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Fri, 28 June 2019 16:56though). Debugger does not help as it does not crash
when compiled in debug mode.

You can activate debug info for release mode. Sometimes it is very useful.

Mirek

Subject: Re: Core 2019
Posted by mirek on Fri, 28 Jun 2019 15:40:40 GMT
View Forum Message <> Reply to Message

For what is worth, I have quickly checked PainterExamples and all is working...

Subject: Re: Core 2019
Posted by Tom1 on Fri, 28 Jun 2019 16:38:38 GMT
View Forum Message <> Reply to Message

Hi Mirek,

Thanks for your reply. I will update from SVN again on Monday morning in the office. Then I will
check again. I will also try enabling debug info for release mode.

Thanks and best regards,

Page 32 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51972#msg_51972
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51972
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51973#msg_51973
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51973
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51974#msg_51974
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51974
https://www.ultimatepp.org/forums/index.php

Tom

Subject: Re: Core 2019
Posted by Novo on Sun, 30 Jun 2019 17:02:08 GMT
View Forum Message <> Reply to Message

I'm getting a crash with a stack trace below when using MemoryAllocPermanent:

Upp::Heap::RemoteFlushRaw (this=<optimized out>) at HeapImp.h:481
Upp::Heap::RemoteFree (this=<optimized out>, ptr=<optimized out>, size=<optimized out>) at
HeapImp.h:498
Upp::Heap::Free (this=<optimized out>, ptr=<optimized out>, page=<optimized out>,
k=<optimized out>) at sheap.cpp:216
Upp::Heap::Free (this=0x7ffff7a15a10, ptr=<optimized out>) at sheap.cpp:237
Upp::MemoryFree (ptr=<optimized out>) at sheap.cpp:420
judy_close (judy=<optimized out>) at lib/judy.c:147
judy::Map<long long, long long>::~Map (this=<optimized out>) at
/home/ssg/dvlp/cpp/sergey/upp/dvlp/plugin/judy/judy.h:48
ConsoleMainFn_ () at test_ht_perf.cpp:98
Upp::AppExecute__ (app=0xfffffffffffffffd) at App.cpp:343
main (argc=-3, argv=0x7ff0b0b5b000, envptr=0x7ffff7a167e8) at test_ht_perf.cpp:8

MemoryAllocPermanent seems to be a replacement for malloc.
The same code using MemoryAlloc works fine.
svn@13460, git@cb77bd58b76a15
Am I doing something wrong or is this a bug?

Subject: Re: Core 2019
Posted by mirek on Sun, 30 Jun 2019 17:11:43 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 30 June 2019 19:02I'm getting a crash with a stack trace below when using
MemoryAllocPermanent:

Upp::Heap::RemoteFlushRaw (this=<optimized out>) at HeapImp.h:481
Upp::Heap::RemoteFree (this=<optimized out>, ptr=<optimized out>, size=<optimized out>) at
HeapImp.h:498
Upp::Heap::Free (this=<optimized out>, ptr=<optimized out>, page=<optimized out>,
k=<optimized out>) at sheap.cpp:216
Upp::Heap::Free (this=0x7ffff7a15a10, ptr=<optimized out>) at sheap.cpp:237
Upp::MemoryFree (ptr=<optimized out>) at sheap.cpp:420
judy_close (judy=<optimized out>) at lib/judy.c:147
judy::Map<long long, long long>::~Map (this=<optimized out>) at
/home/ssg/dvlp/cpp/sergey/upp/dvlp/plugin/judy/judy.h:48
ConsoleMainFn_ () at test_ht_perf.cpp:98

Page 33 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51987#msg_51987
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51987
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51988#msg_51988
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51988
https://www.ultimatepp.org/forums/index.php

Upp::AppExecute__ (app=0xfffffffffffffffd) at App.cpp:343
main (argc=-3, argv=0x7ff0b0b5b000, envptr=0x7ffff7a167e8) at test_ht_perf.cpp:8

MemoryAllocPermanent seems to be a replacement for malloc.
The same code using MemoryAlloc works fine.
svn@13460, git@cb77bd58b76a15
Am I doing something wrong or is this a bug?

MemoryAllocPermanent is for allocating memory that is not to be freed (aka is "permanent"). You
cannot call MemoryFree on it (as it is "permanent" :).

Mirek

Subject: Re: Core 2019
Posted by Novo on Sun, 30 Jun 2019 18:12:49 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 30 June 2019 13:11MemoryAllocPermanent is for allocating memory that is
not to be freed (aka is "permanent"). You cannot call MemoryFree on it (as it is "permanent" :).

Mirek
Thanks! A couple of lines of documentation would be really helpful ... :roll:

Subject: Re: Core 2019
Posted by mirek on Sun, 30 Jun 2019 22:03:00 GMT
View Forum Message <> Reply to Message

Novo wrote on Sun, 30 June 2019 20:12mirek wrote on Sun, 30 June 2019
13:11MemoryAllocPermanent is for allocating memory that is not to be freed (aka is "permanent").
You cannot call MemoryFree on it (as it is "permanent" :).

Mirek
Thanks! A couple of lines of documentation would be really helpful ... :roll:

You are right. Done.

Subject: Re: Core 2019
Posted by Tom1 on Mon, 01 Jul 2019 07:14:01 GMT
View Forum Message <> Reply to Message

Hi Mirek,

I just downloaded SVN 13462 and now it all works OK again... No crashes.

Page 34 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51990#msg_51990
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51990
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51992#msg_51992
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51992
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=51996#msg_51996
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51996
https://www.ultimatepp.org/forums/index.php

Thanks and best regards,

Tom

Subject: Re: Core 2019
Posted by Novo on Thu, 11 Jul 2019 17:55:45 GMT
View Forum Message <> Reply to Message

mirek wrote on Thu, 27 June 2019 03:44In addtion to USEMALLOC there is now
HEAPOVERRIDE flag that kicks out all Memory* definitions, allowing you to replace the whole
allocator with something else than malloc.
Thanks a lot!

P.S. Documentation for MemoryLimitKb has a typo ...

Subject: Re: Core 2019
Posted by mirek on Thu, 11 Jul 2019 18:14:17 GMT
View Forum Message <> Reply to Message

Novo wrote on Thu, 11 July 2019 19:55mirek wrote on Thu, 27 June 2019 03:44In addtion to
USEMALLOC there is now HEAPOVERRIDE flag that kicks out all Memory* definitions, allowing
you to replace the whole allocator with something else than malloc.
Thanks a lot!

P.S. Documentation for MemoryLimitKb has a typo ...

Must be blind, do not see it....

Subject: Re: Core 2019
Posted by Novo on Thu, 11 Jul 2019 18:53:00 GMT
View Forum Message <> Reply to Message

mirek wrote on Thu, 11 July 2019 14:14Novo wrote on Thu, 11 July 2019 19:55mirek wrote on
Thu, 27 June 2019 03:44In addtion to USEMALLOC there is now HEAPOVERRIDE flag that kicks
out all Memory* definitions, allowing you to replace the whole allocator with something else than
malloc.
Thanks a lot!

P.S. Documentation for MemoryLimitKb has a typo ...

Must be blind, do not see it....
"defualt values"

Page 35 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52048#msg_52048
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52048
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52049#msg_52049
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52049
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52050#msg_52050
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52050
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by mirek on Fri, 12 Jul 2019 08:09:42 GMT
View Forum Message <> Reply to Message

Novo wrote on Thu, 11 July 2019 19:55mirek wrote on Thu, 27 June 2019 03:44In addtion to
USEMALLOC there is now HEAPOVERRIDE flag that kicks out all Memory* definitions, allowing
you to replace the whole allocator with something else than malloc.
Thanks a lot!

Any chance to get allocator retested? If still unsatisfactory, send me allocation log?

Mirek

Subject: Re: Core 2019
Posted by Novo on Fri, 12 Jul 2019 14:50:26 GMT
View Forum Message <> Reply to Message

mirek wrote on Fri, 12 July 2019 04:09Novo wrote on Thu, 11 July 2019 19:55mirek wrote on Thu,
27 June 2019 03:44In addtion to USEMALLOC there is now HEAPOVERRIDE flag that kicks out
all Memory* definitions, allowing you to replace the whole allocator with something else than
malloc.
Thanks a lot!

Any chance to get allocator retested? If still unsatisfactory, send me allocation log?

Mirek

Yes, I can do that, but that will take me a few weeks. My apps are currently in broken state.

Could you please add info about HEAPOVERRIDE and MemoryOptions (it is just briefly
mentioned in docs) to documentation?

Also linking to / embedding of Resolving memory leaks into Heap docs would be great because
otherwise this info is distributed among multiple topics and is hard to find. I personally didn't know
about the --memory-breakpoint__ trick.

And, I guess, it is possible to add new allocators to U++ via plugins now ...

Subject: Re: Core 2019
Posted by Novo on Thu, 08 Aug 2019 19:47:17 GMT
View Forum Message <> Reply to Message

I checked "Heap implementation" article from "Help Topics" (which for some reason is not

Page 36 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52060#msg_52060
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52060
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52063#msg_52063
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52063
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52197#msg_52197
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52197
https://www.ultimatepp.org/forums/index.php

published on web), and it looks like it doesn't match current state of the allocator.

I'm trying to get minimum value of alignment of allocated memory. From a simple test below
	size_t sz = 0;
	void* m = nullptr;
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);

I got that min alignment is 32. Is this correct?
And min block size is 28. This is a little bit weird.
This message states that "the smallest allocation has size 32 and is 32 bytes aligned", which
doesn't match the help topic.

Is it possible to expose allocator-related info via a public enum?
Knowing min alignment is critical. Info about block sizes is also important.

TIA

Subject: Re: Core 2019
Posted by mirek on Thu, 08 Aug 2019 20:47:23 GMT
View Forum Message <> Reply to Message

Novo wrote on Thu, 08 August 2019 21:47I checked "Heap implementation" article from "Help
Topics" (which for some reason is not published on web), and it looks like it doesn't match current
state of the allocator.

I'm trying to get minimum value of alignment of allocated memory. From a simple test below
	size_t sz = 0;
	void* m = nullptr;
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);

Page 37 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52198#msg_52198
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52198
https://www.ultimatepp.org/forums/index.php

	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);
	m = MemoryAlloc(1);
	sz = GetMemoryBlockSize(m);

I got that min alignment is 32. Is this correct?
And min block size is 28. This is a little bit weird.
This message states that "the smallest allocation has size 32 and is 32 bytes aligned", which
doesn't match the help topic.

Is it possible to expose allocator-related info via a public enum?
Knowing min alignment is critical. Info about block sizes is also important.

TIA

The problem is that the minimal block size is different in debug, as it adds fences everywhere.

In release, 32 holds true.

Mirek

Subject: Re: Core 2019
Posted by mirek on Thu, 08 Aug 2019 20:53:30 GMT
View Forum Message <> Reply to Message

PS.: Guaranteed alignment is 16.

Subject: Re: Core 2019
Posted by mirek on Thu, 08 Aug 2019 20:59:09 GMT
View Forum Message <> Reply to Message

Commited:

enum {
	UPP_HEAP_ALIGNMENT = 16,
	UPP_HEAP_MINBLOCK = 32,
};

Page 38 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52199#msg_52199
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52199
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52200#msg_52200
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52200
https://www.ultimatepp.org/forums/index.php

Subject: Re: Core 2019
Posted by Novo on Thu, 08 Aug 2019 21:30:05 GMT
View Forum Message <> Reply to Message

mirek wrote on Thu, 08 August 2019 16:59Commited:

enum {
	UPP_HEAP_ALIGNMENT = 16,
	UPP_HEAP_MINBLOCK = 32,
};

Thanks!
I guess, UPP_HEAP_MINBLOCK should be defined separately for Release and Debug. I initially
assumed that it is 32 bytes. I'm glad that I checked that this isn't true ...
It looks kile it is 32 * N - 4 in Debug.

Subject: Re: Core 2019
Posted by mirek on Thu, 08 Aug 2019 22:05:32 GMT
View Forum Message <> Reply to Message

Novo wrote on Thu, 08 August 2019 23:30mirek wrote on Thu, 08 August 2019 16:59Commited:

enum {
	UPP_HEAP_ALIGNMENT = 16,
	UPP_HEAP_MINBLOCK = 32,
};

Thanks!
I guess, UPP_HEAP_MINBLOCK should be defined separately for Release and Debug. I initially
assumed that it is 32 bytes. I'm glad that I checked that this isn't true ...
It looks kile it is 32 * N - 4 in Debug.

True, but really this should only be tuning parameter for optimization, thus only relevant in
release... (Alignment on the other hand migh be important elsewhere, but that is stable).

Page 39 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52201#msg_52201
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52201
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10694&goto=52202#msg_52202
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=52202
https://www.ultimatepp.org/forums/index.php

