Subject: SSE2 and SVO optimization (Painter, memcpy....)
Posted by Tom1 on Mon, 27 Apr 2020 17:19:48 GMT

View Forum Message <> Reply to Message

Hi,
Here's an optimization for BufferPainter.

BufferPainter::Clear(RGBA) speed is improved by over 30 % with the following change in
Painter/Render.cpp:

void BufferPainter::ClearOp(const RGBA& color)

{

/I UPP::Fill(~*ip, color, ip->GetLength());

FillRGBA(~*ip, color, ip->GetLength());

ip->SetKind(color.a == 255 ? IMAGE_OPAQUE : IMAGE_ALPHA);

}

And in Painter/Fillers.h:
namespace Upp {

/I Add the following line:
#define FillRGBA(a,b,c) memsetd((a),*(dword*)&(b),(c))

struct SolidFiller : Rasterizer::Filler {

This may be significant in some usage scenarios as it can currently take e.g. 4.5 milliseconds to
clear a 4K ImageBuffer before drawing to it. This can now be reduced to 2.8 milliseconds.

Best regards,

Tom

EDIT: Changed code to use the newly optimized FillRGBA() found in Fillers.h. This can be found

at:
https://www.ultimatepp.org/forums/index.php?t=msg&th=110 11&goto=53752&#msg_53752

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 28 Apr 2020 08:12:35 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Mon, 27 April 2020 19:19Hi,
Here's an optimization for BufferPainter.

BufferPainter::Clear(RGBA) speed is improved by over 30 % with the following change in

Page 1 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53751#msg_53751
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53751
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53757#msg_53757
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53757
https://www.ultimatepp.org/forums/index.php

Painter/Render.cpp:
void BufferPainter::ClearOp(const RGBA& color)

{
/I UPP::Fill(~*ip, color, ip->GetLength());

FilRGBA(~*ip, color, ip->GetLength());
ip->SetKind(color.a == 255 ? IMAGE_OPAQUE : IMAGE_ALPHA);

}

And in Painter/Fillers.h:
namespace Upp {

// Add the following line:
#define FillRGBA(a,b,c) memsetd((a),*(dword*)&(b),(c))

struct SolidFiller : Rasterizer::Filler {

This may be significant in some usage scenarios as it can currently take e.g. 4.5 milliseconds to
clear a 4K ImageBuffer before drawing to it. This can now be reduced to 2.8 milliseconds.

Now this is really interesting. Fill for RGBA* is actually one that is optimized for filling huge blocks.
| will need to do some benchmarks...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 28 Apr 2020 08:20:53 GMT

View Forum Message <> Reply to Message

Current Fill(RGBA * assembler code

4000EEEO cmp r8d,byte +0x10
4000EEE4 jl 0x14000ef13
4000EEE6 movd xmmO,edx
4000EEEA pshufd xmmO0O,xmmQ0,0x0
4000EEEF nop

4000EEFO0 mov eax,r8d

4000EEF3 movdqu [rcx],xmmO
4000EEF7 movdqu [rcx+0x10],xmmO
4000EEFC movdqu [rcx+0x20],xmmO
4000EF01 movdqu [rcx+0x30],xmmO
4000EF06 add rcx,byte +0x40
4000EFOA lea r8d,[rax-0x10]
4000EFOE cmp eax,byte +0x1f
4000EF11 jg 0x14000eef0

Page 2 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53758#msg_53758
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53758
https://www.ultimatepp.org/forums/index.php

4000EF13 add r8d,byte -0x1
4000EF17 cmp r8d,byte +0xe
4000EF1B ja 0x14000ef59
4000EF1D lea r9,[rel 0x4000ef5c]
4000EF24 movsxd rax,dword [r9+r8*4]
4000EF28 add rax,r9
4000EF2B jmp rax

4000EF2D mov [rcx+0x38],edx
4000EF30 mov [rcx+0x34],edx
4000EF33 mov [rcx+0x30],edx
4000EF36 mov [rcx+0x2c],edx
4000EF39 mov [rcx+0x28],edx
4000EF3C mov [rcx+0x24],edx
4000EF3F mov [rcx+0x20],edx
4000EF42 mov [rcx+0x1c],edx
4000EF45 mov [rcx+0x18],edx
4000EF48 mov [rcx+0x14],edx
4000EF4B mov [rcx+0x10],edx
4000EF4E mov [rcx+0xc],edx
4000EF51 mov [rcx+0x8],edx
4000EF54 mov [rcx+0x4],edx
4000EF57 mov [rcx],edx
4000EF59 ret

and the central snippet from the memsetd variant....

40001565 movaps xmmO,[rel 0x402c60a0]
4000156C nop dword [rax+0x0]

40001570 movups [rsi+rdx*4],xmmO
40001574 movups [rsi+rdx*4+0x10],xmmO
40001579 movups [rsi+rdx*4+0x20],xmmO
4000157E movups [rsi+rdx*4+0x30],xmmO0
40001583 movups [rsi+rdx*4+0x40],xmmO0
40001588 movups [rsi+rdx*4+0x50],xmmO
4000158D movups [rsi+rdx*4+0x60],xmmO
40001592 movups [rsi+rdx*4+0x70],xmmO0
40001597 movups [rsi+rdx*4+0x80],xmmO0
4000159F movups [rsi+rdx*4+0x90],xmm0
400015A7 movups [rsi+rdx*4+0xa0],xmmO0
400015AF movups [rsi+rdx*4+0xb0],xmmO
400015B7 movups [rsi+rdx*4+0xc0],xmm0
400015BF movups [rsi+rdx*4+0xd0],xmmO
400015C7 movups [rsi+rdx*4+0xe0],xmmO
400015CF movups [rsi+rdx*4+0xf0],xmmO0
400015D7 add rdx,byte +0x40

400015DB add rdi,byte +0x8

Page 3 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

400015DF jnz 0x140001570

Interesting...

Benchmarking code

#include <CitrlLib/CtrlLib.h>
using namespace Upp;

GUI_APP_MAIN

{
Color ¢ = Red();

int len = 4000 * 2000;
Buffer<RGBA> b(len);

for(int i = 0; i < 1000; i++) {
{
RTIMING("memsetd");
memsetd(b, *(dword*)&(c), len);
}

{
RTIMING("Fill");

Fill(b, c, len);
}

}

}

CLANGx64, 2700x

TIMING Fill : 2.73s - 273 ms (2.73 s /1000), min: 2.00 ms, max: 4.00 ms, nesting: O -
'}'(I)I\(/)I?NG memsetd : 2.78s - 278 ms (2.78 s /1000), min: 2.00 ms, max: 5.00 ms,
nesting: 0 - 1000

MSBT19x64

TIMING Fill : 289s - 2.89ms (2.89s /1000), min: 2.00 ms, max: 5.00 ms, nesting: O -
‘:IL'?I\C/)I?NG memsetd :290s - 290ms (2.90s /1000), min: 2.00 ms, max: 5.00 ms,

nesting: 0 - 1000

Page 4 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 28 Apr 2020 08:27:28 GMT

View Forum Message <> Reply to Message

Hi,

Benchmarking and tuning is exactly what | did through yesterday (and beyond). | worked with both
CLANGx64 and MSBT19x64. | worked out a bunch of optimized fillers until it turned out that
memsetd() wins easily on large blocks and mostly on smaller blocks too. Especially on
MSBT19x64 there does not seem to be a way to beat memsetd(). On CLANGx64 small transfer of
one or two items was slightly faster, but on larger blocks memsetd() won again. Interestingly,
CLANGx64 was a lot faster than MSBT19x64 for any of my own block transfer attempts, but still
could not beat memsetd().

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 28 Apr 2020 08:33:30 GMT

View Forum Message <> Reply to Message

| guess it might be CPU related... ?

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 28 Apr 2020 09:10:47 GMT

View Forum Message <> Reply to Message

Hm, MacOS 2,3 GHz Intel Core i5

TIMING Fill :152s - 1.52ms (1.52s /1000), min: 1.00 ms, max: 2.00 ms, nesting: O -
1000
TIMING memsetd : 1.53s - 1.53ms (1.53s /1000), min: 1.00 ms, max: 12.00 ms,

nesting: 0 - 1000
That's quite weird...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 28 Apr 2020 09:17:16 GMT

View Forum Message <> Reply to Message

Hi,

Page 5 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53760#msg_53760
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53760
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53761#msg_53761
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53761
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53763#msg_53763
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53763
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53764#msg_53764
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53764
https://www.ultimatepp.org/forums/index.php

Yes, CPU is likely the major player here. | took the liberty to modify Timinglnspector to get finer
granularity for timing using usecs(). The modified testcase can be found below. | get the following
results on my Core i7 + Windows 10 professional x64. Now we can focus on the best round 'min:’
to better avoid other tasks' effect. As you can see memsetd on MSBT19x64 is quite amazing
performer.

MSBT19x64, Intel Core i7:

TIMING memsetd :145s - 1.45ms (1.45s /1000), min: 1.15 ms, max: 5.25 ms,
nesting: 0 - 1000

TIMING Fill : 3.73s - 3.73ms (3.73s /1000), min: 3.25 ms, max: 9.92 ms, nesting: O -
1000

CLANGXx64, Intel Core i7:

TIMING memsetd : 3.85s - 3.85ms (3.85s /1000), min: 3.35 ms, max: 10.36 ms,
nesting: 0 - 1000

TIMING Fill : 3.87s - 3.87ms (3.87s /1000), min: 3.38 ms, max: 11.33 ms, nesting: O -
1000

| guess that in my larger program the optimizations did not work this well as the Fill would have
performed at around 5 ms level for this size of a buffer.

Anyway here's the modified benchmark.
#include <CitrlLib/CtrlLib.h>
using namespace Upp;

class UTiminglnspector {
protected:
static bool active;

const char *name;

int call_count;
int64 total_time;
int64 min_time;
int64 max_time;
int max_nesting;
int all_count;
StaticMutex mutex;

public:
UTiminglnspector(const char *name = NULL); // Not String !!!
~UTiminglnspector();

void Add(dword time, int nesting);

Page 6 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

String Dump();

class Routine {
public:
Routine(UTiminglnspector& stat, int& nesting)
. nesting(nesting), stat(stat) {
start_time = usecs();
nesting++;

}

~Routine() {

nesting--;
stat.Add(start_time, nesting);
}

protected:

int64 start_time;

int& nesting;
UTiminglnspector& stat;

I

static void Activate(bool b) { active = b; }

3
bool UTiminglnspector::active = true;
static UTiminglnspector s_zero; // time of Start / End without actual body to measure

UTimingInspector::UTimingInspector(const char *_name) {

name = _name ? _name :"";

all_count = call_count = max_nesting = min_time = max_time = total_time = 0;
static bool init;

if(finit) {

#if defined(PLATFORM_WIN32) && !defined(PLATFORM_WINCE)
timeBeginPeriod(1);

#endif

init = true;

}

}

UTimingInspector::~UTiminglnspector() {
if(this == &s_zero) return;

Mutex::Lock __ (mutex);

StdLog() << Dump() << "\r\n";

}

void UTiminglnspector::Add(dword time, int nesting)

Page 7 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

{
time = usecs() - time;
Mutex::Lock __ (mutex);
if(lactive) return;
all_count++;
if(nesting > max_nesting)
max_nesting = nesting;
if(nesting == 0) {
total_time +=time;
if(call_count++ == 0)
min_time = max_time = time;
else {
if(time < min_time)
min_time = time;
if(time > max_time)
max_time = time;
}
}
}

String UTiminglnspector::Dump() {
Mutex::Lock __ (mutex);
String s = Sprintf("TIMING %-15s: ", name);
if(call_count == 0)
return s + "No active hit";
ONCELOCK {
int w = GetTickCount();
while(GetTickCount() - w < 200) { // measure profiling overhead
thread_local int nesting = 0;
UTimingInspector::Routine __(s_zero, nesting);
}

}
double tm = max(0.0, double(total_time) / call_count / 1000000 -

double(s_zero.total_time) / s_zero.call_count / 1000000);
return s
+ timeFormat(tm * call_count)
+" - "+ timeFormat(tm)
+" (" + timeFormat((double)total _time /1000000) + " /"
+ Sprintf("%d)", call_count)
+ ", min: " + timeFormat((double)min_time / 1000000)
+ ", max: " + timeFormat((double)max_time / 1000000)
+ Sprintf(", nesting: %d - %d", max_nesting, all_count);

}

#define RUTIMING(x) \

static UTiminglnspector COMBINE(sTmStat, _ LINE__)(x); \

static thread_local int COMBINE(sTmStatNesting, _ LINE_); \

UTimingInspector::Routine COMBINE(sTmStatR, _ LINE__)(COMBINE(sTmStat, _ LINE_),

Page 8 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

COMBINE(sTmStatNesting, LINE_))

GUI_APP_MAIN

{
Color ¢ = Red();

int len = 4000 * 2000;
Buffer<RGBA> b(len);

for(inti = 0; i < 1000; i++) {
{

RUTIMING("Fill");

Fillb, c, len);

}

{
RUTIMING("memsetd");

memsetd(b, *(dword*)&(c), len);
}

}

}

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Oblivion on Tue, 28 Apr 2020 09:27:56 GMT

View Forum Message <> Reply to Message

Hello,

A quick test on an older AMD FX 6100, six core processor. 3.2 GHZ (naturally, it is slower):

Il GCC (x64, latest ver.)

TIMING Fill : 7,53s - 7,53 ms (7,53s /1000), min: 7,00 ms, max: 9,00 ms, nesting: O -
1000
TIMING memsetd :6,3ls - 6,31 ms(6,31s /1000), min: 6,00 ms, max: 18,00 ms,

nesting: 0 - 1000

/I CLANG(x64, latest ver.)

TIMING Fill : 7,07s - 7,07/ ms (7,07 s /1000), min: 6,00 ms, max: 10,00 ms, nesting: 0
- 1000
TIMING memsetd : 7,07s - 7,07 ms (7,08s /1000), min: 6,00 ms, max: 17,00 ms,

nesting: 0 - 1000

Page 9 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53765#msg_53765
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53765
https://www.ultimatepp.org/forums/index.php

Best regards,
Oblivion

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 15 May 2020 07:04:51 GMT

View Forum Message <> Reply to Message

Experimenting with parallel:

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

void CoFill(RGBA *t, RGBA c, int len)
{
const int CHUNK = 1024;
std::atomic<int> ii(0);
CoDo([&] {
for(;;) {
int pos = CHUNK * ii++;
if(pos >= len)
break;
Fill(t + pos, ¢, min(CHUNK, len - pos));
}
D;
}

GUI_APP_MAIN

{
Color ¢ = Red();

int len = 4000 * 2000;
Buffer<RGBA> b(len);

for(inti=0;i<10; i++) {
{
RTIMING("memsetd");
memsetd(b, *(dword*)&(c), len);
}

{
RTIMING("Fill");

Fill(b, c, len);
}

Page 10 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53913#msg_53913
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53913
https://www.ultimatepp.org/forums/index.php

{
RTIMING("CoFill");

CoFill(b, c, len);
}

}

}

TIMING CofFill :19.00 ms - 1.90 ms (19.00 ms / 10), min: 1.00 ms, max: 3.00 ms, nesting:
0-10

TIMING Fill :31.00 ms - 3.10 ms (31.00 ms /10), min: 3.00 ms, max: 4.00 ms, nesting: 0
-10

TIMING memsetd : 30.00 ms - 3.00 ms (30.00 ms /10), min: 2.00 ms, max: 5.00 ms,
nesting: 0 - 10

To try that on different CPU, Rapsberry Pl 4 numbers:

TIMING CoFill : 145.00 ms - 14.50 ms (145.00 ms / 10), min: 14.00 ms, max: 15.00 ms,
nesting: 0 - 10

TIMING Fill : 225.00 ms - 22.50 ms (225.00 ms / 10), min: 22.00 ms, max: 24.00 ms,
nesting: 0 - 10

TIMING memsetd :184.00 ms - 18.40 ms (184.00 ms / 10), min: 11.00 ms, max: 77.00 ms,
nesting: 0 - 10

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 08:18:46 GMT

View Forum Message <> Reply to Message

Hi Mirek,

While interesting, | found that a plain memset() is way faster than memsetd() or Fill(). Just filling
with Oxff (as the RGBA is for white) you will get a superior speed. | currently use memset() for a
clear white on a ImageBuffer before giving it to BufferPainter. For more complex fill colors, |
guess, the apex_memmove / memcpy code could be investigated for a more optimal result. (I
posted a link to the apex code here on the forum briefly before release of 2020.1 :)

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization

Page 11 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53914#msg_53914
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53914
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Fri, 15 May 2020 09:33:55 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Fri, 15 May 2020 10:18

While interesting, | found that a plain memset() is way faster than memsetd() or Fill(). Just filling
with Oxff (as the RGBA is for white) you will get a superior speed. | currently use memset() for a
clear white on a ImageBuffer before giving it to BufferPainter. For more complex fill colors, |
guess, the apex_memmove / memcpy code could be investigated for a more optimal result. (I
posted a link to the apex code here on the forum briefly before release of 2020.1 :)

Best regards,
Tom

With CLANG, memset performance is about the same. However, with MSVC, it really is pretty
damn fast.

| have digged into the code and the key ingredient seems to be MOVNTPS instruction, which
means the code could be easily adapted to setting dwords. | just need to understand MT
implications mentioned here:

https://lwww.felixcloutier.com/x86/movntps

It also might be questionable how this will affect the performance down the road (data not being in
cache and everything...)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 09:41:13 GMT

View Forum Message <> Reply to Message

At the time | was testing with the memset -- if | remember correctly -- on Windows + CLANG the
memset with zero value was very efficient too, but the rest of the set values were slower. So,
there must be some special optimized implementation for zeroing memory on CLANG too.

BR, Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 15 May 2020 09:47:20 GMT

View Forum Message <> Reply to Message

Here we go:

void SSEFill2(RGBA *t, RGBA c, int len)

Page 12 of 92 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53915#msg_53915
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53915
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53916#msg_53916
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53916
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53917#msg_53917
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53917
https://www.ultimatepp.org/forums/index.php

{

if(len >=512) {

while((uintptr_t)t & 63) { // align to cache line
*t++ = C;
len--;

}

dword m[4];
m[0] = m[1] = m[2] = m[3] = *(dword*)&(c);
__m128d val = _mm_loadu_pd((double *)m);
while(len >= 16) {
_mm_stream_pd((double *)t, val);
_mm_stream_pd((double *)(t + 4), val);
_mm_stream_pd((double *)(t + 8), val);
_mm_stream_pd((double *)(t + 12), val);
t += 16;
len -= 16;

}

_mm_sfence();

}

Fill(t, c, len);
}

TIMING CokFill :42.00 ms - 2.10 ms (42.00 ms / 20), min: 1.00 ms, max: 3.00 ms, nesting:
0-20

TIMING SSEFill2 :16.00 ms - 799.98 us (16.00 ms / 20), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 20

TIMING SSEFill :55.00 ms - 2.75 ms (55.00 ms / 20), min: 2.00 ms, max: 3.00 ms, nesting:
0-20

TIMING Fill :56.00 ms - 2.80 ms (56.00 ms /20), min: 2.00 ms, max: 3.00 ms, nesting: 0
- 20

TIMING memsetd :52.00 ms - 2.60 ms (52.00 ms /20), min: 2.00 ms, max: 3.00 ms,
nesting: 0 - 20

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 10:08:47 GMT

View Forum Message <> Reply to Message

:lol: And we have a winner!!

Also, please take a look at MSBT19 and MSBT19x64 for this too. It looks like this code only works
with CLANG and CLANGx64 on Windows. (Have not checked on Linux yet.)

Additionally, plain memset, memsets and memsetd -variants would be useful for various tasks, as
their efficiency varies depending on the compiler.

Page 13 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53918#msg_53918
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53918
https://www.ultimatepp.org/forums/index.php

Thanks and best regards,
Tom

EDIT: | mean it does not compile on MSBT...

Subject: Re: BufferPainter::Clear() optimization
Posted by Oblivion on Fri, 15 May 2020 10:16:13 GMT

View Forum Message <> Reply to Message

On linux with the relatively old AMD Athlon FX 6100.
Works with both GCC (9.3) and CLANG (10.0). Requires #include <smmintrin.h>:
GCC:

TIMING SSEFill2 143,99 ms - 4,40 ms (44,00 ms / 10), min: 4,00 ms, max: 5,00 ms,
nesting: 0 - 10

TIMING CofFill : 55,99 ms - 5,60 ms (56,00 ms/ 10), min: 5,00 ms, max: 6,00 ms, nesting:
0-10

TIMING Fill 175,99 ms - 7,60 ms (76,00 ms /10), min: 7,00 ms, max: 8,00 ms, nesting: 0
-10

TIMING memsetd 166,99 ms - 6,70 ms (67,00 ms /10), min: 5,00 ms, max: 17,00 ms,
nesting: 0 - 10

CLANG:

TIMING SSEFill2 145,99 ms - 4,60 ms (46,00 ms/ 10), min: 4,00 ms, max: 7,00 ms,
nesting: 0 - 10

TIMING CofFill : 55,99 ms - 5,60 ms (56,00 ms /10), min: 5,00 ms, max: 6,00 ms, nesting:
0-10

TIMING Fill 165,99 ms - 6,60 ms (66,00 ms/ 10), min: 6,00 ms, max: 10,00 ms, nesting: O
-10

TIMING memsetd : 78,99 ms - 7,90 ms (79,00 ms /10), min: 5,00 ms, max: 23,00 ms,
nesting: 0 - 10

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 10:28:11 GMT

View Forum Message <> Reply to Message

Hi,

Page 14 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53919#msg_53919
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53919
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53920#msg_53920
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53920
https://www.ultimatepp.org/forums/index.php

Thanks Oblivion; the #include <smmintrin.h> was exactly what was needed on Windows +
CLANG too...

Here are the results for the 4k RGBA fill on Windows 10 x64 on Core i9:

MSBT19:

TIMING SSEFill2 : 1.30s - 1.30ms (1.30s /1000), min: 1.03 ms, max: 1.99 ms, nesting:
0 - 1000

TIMING Fill : 1.13s - 1.13ms (1.13s /1000), min: 841.00 us, max: 3.04 ms, nesting: 0
- 1000

MSBT19x64:

TIMING SSEFill2 : 906.90 ms - 906.90 us (906.93 ms / 1000), min: 846.00 us, max: 1.67 ms,
nesting: 0 - 1000

TIMING Fill : 2.34s - 2.34ms (2.34s /1000), min: 2.21 ms, max: 4.69 ms, nesting: O -
1000

CLANG:

TIMING SSEFill2 : 935.97 ms - 935.97 us (936.02 ms / 1000), min: 854.00 us, max: 1.67 ms,
nesting: 0 - 1000

TIMING Fill : 244s - 244 ms (2.44s /1000), min: 2.25 ms, max: 4.74 ms, nesting: O -
1000

CLANGXx64:

TIMING SSEFill2 : 934.45 ms - 934.45 us (934.47 ms / 1000), min: 854.00 us, max: 1.77 ms,
nesting: 0 - 1000

TIMING Fill 0 220s - 220ms (2.20s /1000), min: 1.98 ms, max: 5.97 ms, nesting: O -
1000

Looks very good indeed! MSBT19 on the other hand looks surprising...

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 15 May 2020 11:15:51 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Fri, 15 May 2020 12:08
Additionally, plain memset, memsets and memsetd -variants would be useful for various tasks, as
their efficiency varies depending on the compiler.

What about this:

Page 15 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53922#msg_53922
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53922
https://www.ultimatepp.org/forums/index.php

void FillCacheLines(void *cache_aligned_ptr, void *datal6, int count)

{

dword *t = (dword *)cache_aligned_ptr;

~_m128d val = _mm_loadu_pd((double *)datal6);
dword *e =t + 16 * count;

while(t < e) {

_mm_stream_pd((double *)t, val);
_mm_stream_pd((double *)(t + 4), val);
_mm_stream_pd((double *)(t + 8), val);
_mm_stream_pd((double *)(t + 12), val);

t += 16;

}

_mm_sfence();

}

template <class T>
void MemSet(void *dest, T data, int len)
{
static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8 || sizeof(T) == 16,
"invalid sizeof");
T *t = (T *)dest;
if(len * sizeof(T) > 550) {
while((uintptr_t)t & 63) { // align to cache line
*t++ = data;
len--;
}
const int itemn = 16 / sizeof(T);
const int per_cache_line = 4 * itemn;
T m[itemn];
for(inti=0; i <itemn; i++)
m([i] = data;
int count = len / per_cache_line;
FillCacheLines(t, m, count);
len -= per_cache_line * count;

}

while(len >= 16) {

t[0] = data; t[1] = data, t[2] = data; t[3] = data;
t[4] = data; t[5] = data; t[6] = data; t[7] = data;
t[8] = data; t[9] = data, t[10] = data; t[11] = data;
t[12] = data; t[13] = data; t[14] = data; t[15] = data;
t += 16;

len -=16;

}

switch(len) {

case 15: t[14] = data;

case 14: t[13] = data;

Page 16 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

case 13: t[12] = data;
case 12: t[11] = data;
case 11: t[10] = data;
case 10: t[9] = data;
case 9: t[8] = data;
case 8: t[7] = data;
case 7: t[6] = data;
case 6: t[5] = data,
case 5: t[4] = data,
case 4: t[3] = data,
case 3: t[2] = data;
case 2: t[1] = data,;
case 1: t[0] = data,;

}

}

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 11:36:13 GMT

View Forum Message <> Reply to Message

Mirek,

Yes, absolutely beautiful!

The results for the set including the new MemSet() on Win10x64 on Core i9 are:
MSBT19:

TIMING MemSet : 831.06 ms - 831.06 us (831.13 ms /1000), min: 779.00 us, max: 1.72
ms, nesting: 0 - 1000

TIMING SSEFill2 :121s - 1.21ms (1.21s /1000), min: 1.00 ms, max: 2.19 ms, nesting:
0 - 1000

TIMING Fill :915.70 ms - 915.70 us (915.76 ms / 1000), min: 859.00 us, max: 3.49 ms,
nesting: 0 - 1000

MSBT19x64:

TIMING MemSet : 818.33 ms - 818.33 us (818.36 ms / 1000), min: 777.00 us, max: 1.71
ms, nesting: 0 - 1000

TIMING SSEFill2 : 899.74 ms - 899.74 us (899.77 ms / 1000), min: 854.00 us, max: 1.78 ms,
nesting: 0 - 1000

TIMING Fill :229s - 229 ms (2.29s /1000), min: 2.21 ms, max: 4.51 ms, nesting: O -
1000

CLANG:

Page 17 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53923#msg_53923
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53923
https://www.ultimatepp.org/forums/index.php

TIMING MemSet : 835.39 ms - 835.39 us (835.45 ms / 1000), min: 790.00 us, max: 1.51
ms, nesting: 0 - 1000

TIMING SSEFill2 :918.63 ms - 918.63 us (918.68 ms / 1000), min: 872.00 us, max: 1.47 ms,
nesting: 0 - 1000

TIMING Fill :2.36s - 236 ms (2.36s /1000), min: 2.28 ms, max: 5.45 ms, nesting: O -
1000

CLANGx64:

TIMING MemSet : 838.86 ms - 838.86 us (838.89 ms / 1000), min: 787.00 us, max: 1.70

ms, nesting: 0 - 1000

TIMING SSEFill2 :921.49 ms - 921.49 us (921.51 ms / 1000), min: 870.00 us, max: 1.84 ms,
nesting: 0 - 1000

TIMING Fill : 2.10s - 210 ms (2.10 s /1000), min: 2.01 ms, max: 5.00 ms, nesting: O -
1000

| trust you can now make all the different fillers through U++ to use this new code... right?
Thanks and best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 21:13:27 GMT

View Forum Message <> Reply to Message

Hi Mirek,

The game is not over yet, I'm afraid. | did some additional benchmarking with varying buffer
lengths to set. It get's more complicated...

RGBA ¢ = Red();

int bsize=8*1024*1024,
Buffer<RGBA> b(bsize,(RGBA)BIlue());

String result="\"N\"\"Fill)\" \"memsetd()\" \"MemSet()\"\r\n";
for(int len=1;len<=Dbsize;len*=2){

int maximum=1000000000/len;

int64 t0=usecs();

for(inti = 0; i < maximum; i++) Fill(~b, c, len);

int64 t1=usecs(t0);

tO=usecs();

for(inti = 0; i < maximum; i++) memsetd(~b, *(dword*)&(c), len);

Page 18 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53934#msg_53934
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53934
https://www.ultimatepp.org/forums/index.php

int64 t2=usecs(t0);

tO=usecs();

for(inti = 0; i < maximum; i++) MemSet(~b, c, len);

int64 t3=usecs(t0);

result.Cat(Format("%d,%f,%f,%f\r\n",len,1000.0*t1/maximum,1000.0*t2/maximum,1000.0*t3/max
imum));

}

SaveFile(GetHomeDirFile("Desktop/memset.csv"),result);

Now, if you import the resulting memset.csv to your spreadsheet program and create a log-log
plot, you will see that the different buffer lengths have a huge impact on the performance of each
algorithm. As filling lengths can be quite diverse, | think we need to think about some combination
of the different algorithms. Additionally, we need to look at the results on different CPUs. | will
keep tinkering on this one for a while here.

(Now I'm running on Core i7 here at home, so this one | can test easily, and also the Core i9 at the
office every now and then, as the situation is what it is...)

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Didier on Fri, 15 May 2020 21:45:21 GMT

View Forum Message <> Reply to Message

Here is what | get on my Linux and Ryzen 2700
Du to unstable results with 10 loops, | also placed results for 1000 loops

The new MemSet() is definitly really a good addition :)

==== CLANG X64 ====

TIMING MemSet : 10.00 ms - 999.98 us (10.00 ms / 10), min: 1.00 ms, max: 1.00 ms,
nesting: 0 - 10

TIMING SSEFill2 :12.00 ms - 1.20 ms (12.00 ms / 10), min: 1.00 ms, max: 2.00 ms,
nesting: 0 - 10

TIMING CokFill :21.00 ms - 2.10 ms (21.00 ms/ 10), min: 2.00 ms, max: 3.00 ms, nesting:
0-10

TIMING Fill :30.00 ms - 3.00 ms (30.00 ms /10), min: 3.00 ms, max: 3.00 ms, nesting: 0
-10

TIMING memsetd : 30.00 ms - 3.00 ms (30.00 ms /10), min: 2.00 ms, max: 9.00 ms,
nesting: 0 - 10

TIMING MemSet : 833.97 ms - 833.97 us (834.00 ms / 1000), min: 0.00 ns, max: 2.00 ms,

nesting: 0 - 1000

Page 19 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53935#msg_53935
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53935
https://www.ultimatepp.org/forums/index.php

TIMING SSEFill2 : 870.97 ms - 870.97 us (871.00 ms / 1000), min: 0.00 ns, max: 2.00 ms,
nesting: 0 - 1000

TIMING CofFill : 1.88s - 1.88ms (1.88s /1000), min: 1.00 ms, max: 3.00 ms, nesting: 0
- 1000

TIMING Fill :290s - 290ms (2.90s /1000), min: 2.00 ms, max: 4.00 ms, nesting: O -
1000

TIMING memsetd :251s - 251 ms(2.51s /1000), min: 2.00 ms, max: 10.00 ms,

nesting: 0 - 1000

==== GCC X64 ====

TIMING MemSet : 7.00ms - 699.98 us (7.00 ms / 10), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 10

TIMING SSEFill2 : 9.00 ms - 899.98 us (9.00 ms /10), min: 0.00 ns, max: 1.00 ms, nesting:
0-10

TIMING CofFill :23.00 ms - 2.30 ms (23.00 ms /10), min: 2.00 ms, max: 3.00 ms, nesting:
'(I)'I;\/IllglG Fill : 30.00 ms - 3.00 ms (30.00 ms /10), min: 2.00 ms, max: 4.00 ms, nesting: 0
:I'Ill\c/I)ING memsetd : 35.00 ms - 3.50 ms (35.00 ms /10), min: 2.00 ms, max: 10.00 ms,
nesting: 0 - 10

TIMING MemSet : 820.98 ms - 820.98 us (821.00 ms / 1000), min: 0.00 ns, max: 2.00 ms,

nesting: 0 - 1000
TIMING SSEFill2 : 877.98 ms - 877.98 us (878.00 ms / 1000), min: 0.00 ns, max: 2.00 ms,
nesting: 0 - 1000

TIMING CofFill :1.85s - 1.85ms (1.85s /1000), min: 1.00 ms, max: 3.00 ms, nesting: 0
- 1000

TIMING Fill 1 297s - 297 ms (2.97 s /1000), min: 2.00 ms, max: 4.00 ms, nesting: O -
1000

TIMING memsetd :252s - 252ms (2.52s /1000), min: 2.00 ms, max: 8.00 ms,

nesting: 0 - 1000

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 15 May 2020 23:59:37 GMT

View Forum Message <> Reply to Message

Hi,

I've worked on optimizing the new_memsetd() operation through various buffer sizes up to 8M and
here's the best | can come up with (at least this night...). With CLANG it seems to be beneficial to
use the Mirek's new MemSet() for buffer sizes above about 1M, but below that and also with
MSBT19 / MSBT19x64 the result is better without. (This algorithm is especially efficient with small
fills and therefore should work well as a BufferPainter filler too.) For best results, there are
separate versions for 32-bit and 64-bit code. (The '#ifdef WIN64' obviously only works on

Page 20 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53936#msg_53936
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53936
https://www.ultimatepp.org/forums/index.php

Windows, but | think there was some other flag on Linux for detecting a 64-bit environment.
Please apply that flag, whatever it is, if you test on Linux, etc...)

#ifdef WING4

inline void new_memsetd(dword *t, dword data, int len){
#ifdef COMPILER_CLANG
if(len>1024*1024){
MemSet(t,data,len);
return;
}
#endif
if(len&1) *t++=data;
len>>=1;

uinté4 *w=(uint64*)t;
uinté4 q=data;
q=(q << 32) | data;

switch(len) {
default:{
uinté4 *lim = w + len;
while(w < lim) *w++ = q;
break;

}

case 16: w[15] = q;
case 15: w[14] =q;
case 14: w[13] =q;
case 13: w[12] = q;
case 12: w[11] = q;
case 11: w[10] = q;
case 10: w[9] = q;
case 9: w[8] =q;
case 8: w[7] =q;
case 7: w[6] =q;
case 6: w[5] =q;
case 5: w[4] =q;
case 4: w[3] =q;
case 3: w[2] =q;
case 2: w[1] = q;
case 1. w[0] = q;

}

}

t#else

inline void new_memsetd(dword *t, dword data, int len){
#ifdef COMPILER_CLANG

Page 21 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

if(len>1024*1024){
MemSet(t,data,len);
return;

}

#endif

switch(len) {

default:{
dword *lim =t + len;
while(t < lim) *t++ = data;
break;

}

case 16: t[15] = data;
case 15: t[14] = data;
case 14: t[13] = data;
case 13: t[12] = data;
case 12: t[11] = data;
case 11: t[10] = data;
case 10: t[9] = data;
case 9: t[8] = data;
case 8: t[7] = data;
case 7: t[6] = data;
case 6: t[5] = data;
case 5: t[4] = data;
case 4: t[3] = data;
case 3: t[2] = data;
case 2: t[1] = data;
case 1: t[0] = data;

}

}

#endif

The updated benchmarking code:
RGBA c¢ = Red();

int bsize=8*1024*1024;
Buffer<RGBA> b(bsize,(RGBA)BIue());

String result="\"N\"\"FillO\",\"new_memsetd()\",\"MemSet()\"\r\n";

for(int len=1;len<=bsize;){

int maximum=100000000/len;

int64 t0=usecs();

for(inti = 0; i < maximum; i++) Fill(~b, c, len);

int64 tl=usecs();

for(inti = 0; i < maximum, i++) new_memsetd((dword*)~b, *(dword*)&(c), len);
int64 t2=usecs();

for(inti = 0; i < maximum; i++) MemSet(~b, c, len);

Page 22 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

int64 t3=usecs();

result.Cat(Format("%d,%f,%f,%f\r\n",len,1000.0*(t1-t0)/maximum,1000.0*(t2-t1)/maximum,1000.
0*(t3-t2)/maximum));

if(len<32) len++;

else len*=2;

}

SaveFile(GetHomeDirFile("Desktop/memset.csv"),result);

Again, | suggest you plot your results using a log-log chart to clearly see the performance with all
different block sizes.

If you have some time to spare, please let me know how this works for you.

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Sat, 16 May 2020 22:10:57 GMT

View Forum Message <> Reply to Message

Hi,

Interestingly, the FIllRGBA() that can be found in the current BufferPainter Fillers, is a real
performer. It wins below 1M dwords just about anything else. However, Mireks new MemSet is the
winner thereafter. This applies on Windows 10 x64 to CLANG/CLANGx64/MSBT19 on my Core
i7. Only MSBT19x64 has a different situation and the following code tries to optimize that, in
addition to combining FillRGBA and MemSet for the other compilers:

#if defined(WIN64) && defined(COMPILER_MSC)

/[for MSBT19x64 only:
inline void new_memsetd(void *b, dword data, int len){
dword *t=(dword *)b;
switch(len){
case 6: t[5] = data;
case 5: t[4] = data;
case 4: t[3] = data;
case 3: t[2] = data;
case 2: t[1] = data;
case 1: t[0] = data;
case O: return;

default:{
if(len&1) *t++=data;
len>>=1;

Page 23 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53946#msg_53946
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53946
https://www.ultimatepp.org/forums/index.php

uinté4 *w=(uint64*)t;
uint64 q=*(dword*)&data;
q|=(q <<32);

switch(len) {
default:{
uinté4 *lim = w + len - 32;
while(w < lim) *w++ = (;
}

case 32: w[31] =q;
case 31: w[30] =q;
case 30: w[29] = q;
case 29: w[28] = q;
case 28: w[27] =q;
case 27: w[26] = q;
case 26: w[25] =q;
case 25: w[24] = q;
case 24: w[23] =q;
case 23: w[22] = q;
case 22: w[21] = q;
case 21: w[20] =q;
case 20: w[19] =q;
case 19: w[18] =q;
case 18: w[17] =q;
case 17: w[16] = q;
case 16: w[15] =q;
case 15: w[14] =q;
case 14: w[13] =q;
case 13: w[12] = q;
case 12: w[11] = q;
case 11: w[10] = q;
case 10: w[9] = q;
case 9: w[8] =q;
case 8: w[7] =q;
case 7: w[6] = q;
case 6: w[5] =q;
case 5: w[4] =q;
case 4: w[3] =q;
case 3: w[2] =q;
case 2: w[1] =q;
case 1: w[0] =q;

}

}

}
}

#else

Page 24 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

inline void new_memsetd(void *b, dword data, int len){
if(len<=1024*1024) FilRGBA((RGBA*)b,*(RGBA*)&data,len);
else MemSet(b,data,len);

}

#endif

The benchmarking code for various fill sizes now looks like this:
RGBA ¢ = Red();

int bsize=8*1024*1024;
Buffer<RGBA> b(bsize,(RGBA)BIlue());

String result="\"N\"\"Fill)\" \"new_memsetd()\"\"MemSet(\" \"FiIllIRGBA(\"\r\n";
for(int len=1;len<=bsize;){

int maximum=100000000/len;

int64 t0=usecs();

for(inti = 0; i < maximum; i++) Fill(~b, c, len);

int64 t1=usecs();

for(inti = 0; i < maximum; i++) new_memsetd(~b, *(dword*)&c, len);

int64 t2=usecs();

for(inti = 0; i < maximum; i++) MemSet(~b, c, len);

int64 t3=usecs();

for(inti = 0; i < maximum; i++) FillRGBA(~D, c, len);

int64 t4=usecs();

result.Cat(Format("%d,%f,%f,%f,%f\r\n",len,1000.0*(t1-t0)/maximum,1000.0*(t2-t1)/maximum,10
00.0*(t3-t2)/maximum,1000.0*(t4-t3)/maximum));

if(len<64) len++;

else len*=2;

}

SaveFile(GetHomeDirFile("Desktop/memset.csv"),result);

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 17 May 2020 06:47:44 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Sat, 16 May 2020 01:59With CLANG it seems to be beneficial to use the Mirek's
new MemSet() for buffer sizes above about 1M

| guess L2 cache size plays a role here. The new trick bypasses the cache so kicks in when cache

Page 25 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53947#msg_53947
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53947
https://www.ultimatepp.org/forums/index.php

is exhausted...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Sun, 17 May 2020 08:01:51 GMT

View Forum Message <> Reply to Message

mirek wrote on Sun, 17 May 2020 09:47Tom1 wrote on Sat, 16 May 2020 01:59With CLANG it
seems to be beneficial to use the Mirek's new MemSet() for buffer sizes above about 1M

| guess L2 cache size plays a role here. The new trick bypasses the cache so kicks in when cache
is exhausted...

Mirek

Hi,

Where can | find the new trick?
BR,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 17 May 2020 13:49:50 GMT

View Forum Message <> Reply to Message

Ah, by "trick" | mean using using non-temporal move instruction which we have found in
memset....

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 17 May 2020 16:05:52 GMT

View Forum Message <> Reply to Message

What about this:

#include <CtrlLib/CtrILib.h>
#include <smmintrin.h>

using namespace Upp;

Page 26 of 92 ---- Generated from Ut+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53948#msg_53948
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53948
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53951#msg_53951
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53951
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53952#msg_53952
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53952
https://www.ultimatepp.org/forums/index.php

void FillO(RGBA *t, RGBA c, int len)

{

while(len >= 16) {
tf0]=c; tf1] =c; t[2] =c; t[3] =¢;
tf[4] = c; t[5] = c; t[6] = c; t[7] = c;
t[8] = c; t[9] = c; t[10] = c; t[11] = c;
t[12] = c; t[13] = c; t[14] = c; t[15] = c;
t += 16;
len -=16;

}

switch(len & 15) {

case 15: t[14] = c;

case 14: t[13] = c;

case 13: t[12] = c;

case 12: t[11] = c;

case 11: t[10] = c;

case 10: t[9] = c;

case 9: t[8] = c;

case 8: t[7] = c;

case 7: t[6] = c;

case 6: t[5] = c;

case 5: t[4] = c;

case 4: t[3] = c;

case 3:t[2] = c;

case 2: t[1] = c;

case 1: t[0] = c;

}

}

void Fill2(RGBA *t, RGBA c, int len)
{
while(len >= 16) {
tf0] =c; t[1] =c; t[2] =c; t[3] =¢;
t[4] =c; t[5] =c; t[6] = c; t[7] = c;
t[8] = c; t[9] = c; t[10] = c; t[11] = c;
t[12] = c; t[13] = c; t[14] = c; t[15] = c;
t += 16;
len -= 16;
}
if(len & 8) {
t[0] = t[1] = t[2] = t[3] = t[4] = t[5] = t[6] = t[7] = c;
t+=8;
}
if(len & 4) {
t0] = t[1] = t[2] = t[3] = c;
t+=4;
}

Page 27 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

if(len & 2) {

t[0] =t[1] = c;
t+=2;
}
if(len & 1)
t[0] = c;
}
void Fill3(RGBA *t, RGBA c, int len)
{
dword m[4];

m[0] = m[1] = m[2] = m[3] = *(dword*)&(c);
. m128d val =_mm_loadu_pd((double *)m);
if(len >=16) {
if(len > 1024*1024 / 16 && ((uintptr_t)t & 3) == 0) {// for really huge data, bypass the cache
while((uintptr_t)t & 15) {// align to 16 bytes for SSE
*t++ = c;
len--;
}
do {
_mm_stream_pd((double *)t, val);
_mm_stream_pd((double *)(t + 4), val);
_mm_stream_pd((double *)(t + 8), val);
_mm_stream_pd((double *)(t + 12), val);
t += 16;
len -=16;
}
while(len >= 16);
_mm_sfence();
}
else
do {
_mm_storeu_pd((double *)t, val);
_mm_storeu_pd((double *)(t + 4), val);
_mm_storeu_pd((double *)(t + 8), val);
_mm_storeu_pd((double *)(t + 12), val);
t += 16;
len -= 16;
}
while(len >= 16);
}
if(len & 8) {
_mm_storeu_pd((double *)t, val);
_mm_storeu_pd((double *)(t + 4), val);
t+=8;
}
if(len & 4) {
_mm_storeu_pd((double *)t, val);

Page 28 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

t+=4,

}

if(len & 2) {
t[0] =t[1] = c;
t+=2;

}

if(len & 1)

t[0] = c;

}

int len = 2000 * 4000;

GUI_APP_MAIN

{
Color ¢ = Red();

Buffer<RGBA> b(2000);

Vector<int> rnd;
for(inti = 0; i < 200; i++)
rnd << Random(100);

for(inti = 0; i < 1000000; i++) {
{
RTIMING("memsetd");
for(inti=0; i <rnd.GetCount(); i += 2)
memsetd(b + rnd[i], *(dword*)&(c), rnd[i + 1]);
}

{
RTIMING("Fill");

for(inti=0; i < rnd.GetCount(); i += 2)
Fill(lb + rnd[i], c, rnd[i + 1]);
}

{
RTIMING("Fill0");

for(inti = 0; i < rnd.GetCount(); i += 2)
Fillo(b + rnd[i], c, rnd[i + 1]);
}

{
RTIMING("Fill2");

for(inti = 0; i < rnd.GetCount(); i += 2)
Fill2(b + rnd[i], c, rnd[i + 1]);
}

{
RTIMING("Fill3");

for(inti = 0; i < rnd.GetCount(); i += 2)
Fill3(b + rnd]i], ¢, rnd[i + 1]);
}

Page 29 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

{
RTIMING("memset");

for(inti = 0; i < rnd.GetCount(); i += 2)
memset(b + 4 * rnd[i], 255, 4 * rnd[i + 1]);
}
}

b.Alloc(len);

for(inti=0; i< 20; i++) {
memsetd(b, *(dword*)&(c), len);
{
RTIMING("HUGE memsetd");
memsetd(b, *(dword*)&(c), len);
}

{
RTIMING("HUGE Fill");

Fill(b, c, len);
}

{
RTIMING("HUGE Fill3");

Fill3(b, c, len);
}

{
RTIMING("HUGE memset");

memset(b, c, len * 4);
}
}

BeepExclamation();

}

| believe Fill3 does not have any weakness here... Actually, CLANG produced almost exactly the
same code for Fill2 and memsetd for small fills, but | guess providing SSE2 implementation
directly does not hurt anything. Plus we still like to have that cache bypass...

So | would go for Fill3 for X86 and Fill2 for non-X86 (in the hope it gets optimized for neon on

ARM...)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Sun, 17 May 2020 18:56:41 GMT

View Forum Message <> Reply to Message

Hi Mirek,

Page 30 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53953#msg_53953
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53953
https://www.ultimatepp.org/forums/index.php

Here are my results:
CLANG

TIMING HUGE memset :27.28 ms- 1.36 ms (27.29 ms /20), min: 1.25 ms, max: 1.66 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :35.01 ms- 1.75ms (35.01 ms /20), min: 1.63 ms, max: 1.99 ms,
nesting: 0 - 20

TIMING HUGE Fill :73.74 ms - 3.69 ms (73.75 ms /20), min: 3.32 ms, max: 7.43 ms,
nesting: 0 - 20

TIMING HUGE memsetd :72.88 ms - 3.64 ms (72.88 ms /20), min: 3.40 ms, max: 4.51 ms,
nesting: 0 - 20

TIMING memset :1.01s - 1.01us (1.07s /1000000), min: 1.00 us, max: 28.00 us,
nesting: 0 - 1000000

TIMING Fill3 : 505.44 ms - 505.44 ns (565.98 ms / 1000000), min: 0.00 ns, max: 29.00 us,
nesting: 0 - 21000000

TIMING Fill2 : 497.06 ms - 497.06 ns (557.61 ms / 1000000), min: 0.00 ns, max: 28.00 us,
nesting: 0 - 1000000

TIMING FillO : 772.53 ms - 772.53 ns (833.07 ms / 1000000), min: 0.00 ns, max: 63.00 us,
nesting: 0 - 21000000

TIMING Fill : 1.67s - 1.67us (1.73 s /1000000), min: 1.00 us, max: 58.00 us, nesting:
0 - 1000000

TIMING memsetd : 495.67 ms - 495.67 ns (556.22 ms / 1000000), min: 0.00 ns, max: 28.00

us, nesting: 0 - 1000000
CLANGx64

TIMING HUGE memset :27.76 ms - 1.39 ms (27.76 ms /20), min: 1.28 ms, max: 1.80 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :36.31 ms- 1.82 ms (36.31 ms/20), min: 1.59 ms, max: 2.27 ms,
nesting: 0 - 20

TIMING HUGE Fill :73.42ms - 3.67 ms (73.42 ms/20), min: 3.41 ms, max: 4.74 ms,
nesting: 0 - 20

TIMING HUGE memsetd :74.52 ms- 3.73ms (74.52 ms /20), min: 3.47 ms, max: 4.22 ms,
nesting: 0 - 20

TIMING memset : 898.49 ms - 898.49 ns (925.83 ms / 1000000), min: 0.00 ns, max: 52.00
us, nesting: 0 - 1000000

TIMING Fill3 : 492.59 ms - 492.59 ns (519.92 ms / 1000000), min: 0.00 ns, max: 32.00 us,
nesting: 0 - 1000000

TIMING Fill2 : 495.82 ms - 495.82 ns (523.15 ms / 1000000), min: 0.00 ns, max: 28.00 us,
nesting: 0 - 1000000

TIMING FillO : 569.61 ms - 569.61 ns (596.95 ms / 1000000), min: 0.00 ns, max: 41.00 us,
nesting: 0 - 1000000

TIMING Fill :591.56 ms - 591.56 ns (618.90 ms / 1000000), min: 0.00 ns, max: 30.00 us,

nesting: 0 - 1000000

TIMING memsetd : 549.04 ms - 549.04 ns (576.37 ms / 1000000), min: 0.00 ns, max: 65.00

us, nesting: 0 - 1000000

Page 31 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

MSBT19

TIMING HUGE memset :26.51 ms- 1.33ms (26.51 ms/20), min: 1.26 ms, max: 1.49 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :35.42ms- 1.77 ms (35.42 ms/ 20), min: 1.58 ms, max: 2.14 ms,
nesting: 0 - 20

TIMING HUGE Fill :25.47 ms- 1.27 ms (25.48 ms /20), min: 1.18 ms, max: 1.59 ms,
nesting: 0 - 20

TIMING HUGE memsetd :25.12ms - 1.26 ms (25.12 ms /20), min: 1.15 ms, max: 1.59 ms,
nesting: 0 - 20

TIMING memset :978.21 ms - 978.21 ns (1.05s /1000000), min: 1.00 us, max: 29.00 us,
nesting: 0 - 1000000

TIMING Fill3 : 1.50s - 1.50us (1.58 s /1000000), min: 1.00 us, max: 29.00 us, nesting:
0 - 1000000

TIMING Fill2 : 1.89s - 1.89us (1.96 s /1000000), min: 1.00 us, max: 34.00 us, nesting:
0 - 1000000

TIMING FillO : 2.02s - 2.02us (2.09 s /1000000), min: 1.00 us, max: 33.00 us, nesting:
0 - 1000000

TIMING Fill : 2.06s - 2.06 us (2.14s /1000000), min: 1.00 us, max: 32.00 us, nesting:
0 - 1000000

TIMING memsetd : 1.62s - 1.62us (1.69s /1000000), min: 1.00 us, max: 45.00 us,

nesting: 0 - 1000000
MSBT19x64

TIMING HUGE memset :26.96 ms - 1.35 ms (26.96 ms /20), min: 1.27 ms, max: 1.90 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :35.07 ms- 1.75ms (35.08 ms /20), min: 1.62 ms, max: 2.02 ms,
nesting: 0 - 20

TIMING HUGE Fill :67.09 ms - 3.35 ms (67.09 ms /20), min: 3.17 ms, max: 3.60 ms,
nesting: 0 - 20

TIMING HUGE memsetd :25.64 ms- 1.28 ms (25.64 ms/20), min: 1.19 ms, max: 1.48 ms,
nesting: 0 - 20

TIMING memset : 818.75 ms - 818.75 ns (856.11 ms / 1000000), min: 0.00 ns, max: 31.00
us, nesting: 0 - 1000000

TIMING Fill3 : 1.36s - 1.36 us (1.40 s /1000000), min: 1.00 us, max: 31.00 us, nesting:
0 - 1000000

TIMING Fill2 : 1.67s - 1.67us (1.70 s /1000000), min: 1.00 us, max: 30.00 us, nesting:
0 - 1000000

TIMING FillO : 1.66s - 1.66us (1.70 s /1000000), min: 1.00 us, max: 46.00 us, nesting:
0 - 1000000

TIMING Fill : 1.68s - 1.68us (1.72s /1000000), min: 1.00 us, max: 50.00 us, nesting:
0 - 1000000

TIMING memsetd :1.50s - 1.50us (1.54 s /1000000), min: 1.00 us, max: 29.00 us,

nesting: 0 - 1000000

Fill3 is generally the best, but | experience two issues behind the scenes of this benchmark:

Page 32 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

1. On MSBT19 / MSBT19x64 there is a significant penalty for small counts. It results in 5 ns per
call, whereas in CLANG it is about 0.8 - 1.0 ns per call.

2. On MSBT19x64 the optimal threshold size is 2M counts on my Core i7. However, interestingly
the default threshold value works better with MSBT19 on the same computer.

| will continue to investigate this.

Thanks and best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Sun, 17 May 2020 19:46:30 GMT

View Forum Message <> Reply to Message

Mirek,

Also, please check my previous new_memsetd() above using MSBT19x64 for reference.
Preferably also with short transfers (1-64).

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Oblivion on Sun, 17 May 2020 20:00:14 GMT

View Forum Message <> Reply to Message

Here's results on (AMD FX, linux x64):

GCC:

TIMING HUGE memset :113,98 ms- 5,70 ms (114,00 ms /20), min: 5,00 ms, max: 6,00 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :81,98 ms - 4,10 ms (82,00 ms /20), min: 4,00 ms, max: 5,00 ms,
nesting: 0 - 20

TIMING HUGE Fill : 145,98 ms - 7,30 ms (146,00 ms / 20), min: 7,00 ms, max: 8,00 ms,
nesting: 0 - 20

TIMING HUGE memsetd : 125,98 ms - 6,30 ms (126,00 ms / 20), min: 6,00 ms, max: 7,00 ms,
nesting: 0 - 20

TIMING memset : 1,24s - 1,24 us (2,23 s /1000000), min: 0,00 ns, max: 1,00 ms,
nesting: 0 - 1000000

TIMING Fill3 :2,01s - 2,01us(3,01s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

Page 33 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53954#msg_53954
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53954
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53955#msg_53955
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53955
https://www.ultimatepp.org/forums/index.php

TIMING Fill2 : 2,43s - 2,43 us (3,42 s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING FillO : 2,77s - 2,77 us (3,76 s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING Fill » 2,72s - 2,72us (3,71 s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING memsetd :1,80s - 1,80us(2,80s /1000000), min: 0,00 ns, max: 1,00 ms,

nesting: 0 - 1000000

CIANG:

TIMING HUGE memset :120,98 ms- 6,05 ms (121,00 ms /20), min: 5,00 ms, max: 7,00 ms,
nesting: 0 - 20

TIMING HUGE Fill3 :81,98 ms - 4,10 ms (82,00 ms /20), min: 4,00 ms, max: 5,00 ms,
nesting: 0 - 20

TIMING HUGE Fill : 130,98 ms - 6,55 ms (131,00 ms/ 20), min: 6,00 ms, max: 7,00 ms,
nesting: 0 - 20

TIMING HUGE memsetd : 133,98 ms - 6,70 ms (134,00 ms /20), min: 6,00 ms, max: 7,00 ms,
nesting: 0 - 20

TIMING memset : 1,49s - 1,49 us (2,39 s /1000000), min: 0,00 ns, max: 1,00 ms,
nesting: 0 - 1000000

TIMING Fill3 :1,74s - 1,74 us (2,64 s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING Fill2 :162s - 1,62us(2,52s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING FillO : 2,00s - 2,00us (2,90s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING Fill : 2,06s - 2,06 us(2,96s /1000000), min: 0,00 ns, max: 1,00 ms, nesting:
0 - 1000000

TIMING memsetd : 2,18s - 2,18 us (3,08 s /1000000), min: 0,00 ns, max: 1,00 ms,

nesting: 0 - 1000000

Best regards,
Oblivion

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Sun, 17 May 2020 21:25:00 GMT

View Forum Message <> Reply to Message

Mirek,

Please check out this one. It features better performance on MSBT19 / MSBT19x64 with low
counts, and works well on CLANG/CLANGx64 too:
inline void new_memset128(void *b, dword data, int len){

Page 34 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53957#msg_53957
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53957
https://www.ultimatepp.org/forums/index.php

switch(len){

case 4: ((dword *)b)[3] = data;
case 3: ((dword *)b)[2] = data;
case 2: ((dword *)b)[1] = data;
case 1: ((dword *)b)[0] = data;
case 0: return;

}

__m128iq=_mm_setl epi32(*(int*)&data);
__m128i*w = (__m128i*)b;

switch(len>>2){
default:{
__ml128i*e = (__ml128i*)b + (len>>2) - 4;
if(len <= 2*1024*1024){
while(w<e){
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
}
}

else{

while(w<e){
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
}

}

}

case 4. _mm_storeu_sil28(w++, q);
case 3: _mm_storeu_sil28(w++, q);
case 2: _mm_storeu_sil28(w++, q);
case 1. _mm_storeu_sil28(w++, q);
}

switch(len&3){

case 3: ((dword *)b)[len-3] = data,;
case 2: ((dword *)b)[len-2] = data,;
case 1: ((dword *)b)[len-1] = data,;

}

}

Best regards,

Page 35 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Tom

EDIT: Fine tuning...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 08:16:32 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Sun, 17 May 2020 23:25Mirek,

Please check out this one. It features better performance on MSBT19 / MSBT19x64 with low
counts, and works well on CLANG/CLANGx64 too:

| think there are 2 issues:

- Cache bypass starts at SMB.

- Missing alignment adjustment for cache bypass.

- I might be wrong, but why is there " - 4": _ m128i *e = (__m128i*)t + (len>>2) - 4; ?

But yes, it hits something for MSC compiler... :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 09:13:55 GMT

View Forum Message <> Reply to Message

Hi,

Yes, you're right: The alignment should be handled. I'll take a look at it... (just need to minimize
the code size in order to avoid penalty for short transfers. It is extremely sensitive.)

The cache limit is intentionally 8MB as this is the sweet spot for my Core i7. Probably should get
this value from the system to optimize the correct threshold.

The -4 compensates the rest of the samples handled within the leaked default in the switch. (The
below cases do the trick).

Best regards,

Tom

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53960#msg_53960
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53960
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53961#msg_53961
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53961
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 11:31:25 GMT

View Forum Message <> Reply to Message

Hi,

Alignment corrected. (Caused obviously a lot of rearranging things to obtain balance.) Threshold
is still at 8M, but feel free to experiment.

inline void new_memset128(void *b, dword data, int len){
switch(len){

case 5: ((dword *)b)[4] = data;

case 4: ((dword *)b)[3] = data;

case 3: ((dword *)b)[2] = data;

case 2: ((dword *)b)[1] = data;

case 1: ((dword *)b)[0] = data;

case 0O: return;

}

__m128iq=_mm_setl epi32(*(int*)&data);
__m128i*w = (__m128i*)b;
__m128i*e = (__m128i*)b + (len>>2);

if(len <= 2*1024*1024 || ((uintptr_t)b&3)){
while(w<e-1){
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);

}

if(w<e) _mm_storeu_sil28(w++, q);

}

else{

int s=(-((int)((uintptr_t)b)>>2))&0x3;
switch(s){

case 3: ((dword *)b)[2] = data;
case 2: ((dword *)b)[1] = data;
case 1: ((dword *)b)[0] = data;

}
w = (__m128i*) ((dword*)b + s);

while(w<e) _mm_stream_sil28(w++, q);
_mm_sfence();

}

switch(len&3){

case 3: ((dword *)b)[len-3] = data,;
case 2: ((dword *)b)[len-2] = data,;
case 1: ((dword *)b)[len-1] = data;

}

Page 37 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53962#msg_53962
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53962
https://www.ultimatepp.org/forums/index.php

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 11:33:20 GMT

View Forum Message <> Reply to Message

So | kept digging and found that the reason why Fill3 performed great with CLANG and less great
with MSC was that CLANG understand what | mean with that ugly array based code to fill 4 color
values into the xmm register while MSC really created that 'm' array, stored 4 values into memory
and then fetched them into xmm... :)

Fixed Fill3 seems to perform well with MSC too:

void Fill3(RGBA *t, RGBA c, int len)
{
__ml28ivald = _mm_setl epi32(*(int*)&c);
auto Set4 = [&](int at) { _mm_storeu_si128((__m128i *)(t + at), val4); };
auto Set4S = [&](int at) { _mm_stream_si128((_m128i *)(t + at), val4); };
if(len >= 16) {
if(len > 1024*1024 / 16 && ((uintptr_t)t & 3) == 0) { // for really huge data, bypass the cache
while((uintptr_t)t & 15) {// align to 16 bytes for SSE
*t++ = c;
len--;
}
do{
Set4S(0);
Set4S(4);
Set4S(8);
Set4S(12);
t += 16;
len -=16;
}
while(len >= 16);
_mm_sfence();
}
else
do {
Set4(0);
Set4(4);
Set4(8);
Set4(12);

Page 38 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53963#msg_53963
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53963
https://www.ultimatepp.org/forums/index.php

t += 16;
len -= 16;

}
while(len >= 16);
}

if(len & 8) {
Set4(0);
Set4(4);
t+=8;

}

if(len & 4) {
Set4(0);
t+=4,

}

if(len & 2) {
tl0] =t[1] =c;
t+=2;

}

if(len & 1)
t[0] = c;

}

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 11:43:39 GMT

View Forum Message <> Reply to Message

This variation of basically the same thing seems a tiny bit faster:

void Fill3a(RGBA *t, RGBA c, int len)
{
__ml28ivald = _mm_setl epi32(*(int*)&c);
auto Set4 = [&](int at) { _mm_storeu_si128((__m128i *)(t + at), vald); };
auto Set4S = [&](int at) { _mm_stream_si128((_m128i *)(t + at), vald); };
if(len >= 32) {
if(len > 1024*1024 / 16 && ((uintptr_t)t & 3) == 0) {// for really huge data, bypass the cache
while((uintptr_t)t & 15) {// align to 16 bytes for SSE
*t++ = C;
len--;
}
do {
Set4S(0); SetdS(4); Set4S(8); SetdS(12);
Set4S(16); Setd4S(20); SetdS(24); Set4S(28);
t+=32;

Page 39 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53964#msg_53964
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53964
https://www.ultimatepp.org/forums/index.php

len -= 32;
}
while(len >= 32);
_mm_sfence();
}
else
do{
Set4(0); Set4(4); Set4(8); Set4(12);
Set4(16); Set4(20); Set4(24); Set4(28);
t+=32;
len -= 32;
}
while(len >= 32);
}
if(len & 16) {
Set4(0); Set4(4); Set4(8); Set4(12);
t += 16;
}
if(len & 8) {
Set4(0); Set4(4);
t+=8;
}
if(len & 4) {
Set4(0);
t +=4;
}
if(len & 2) {
tl0] = t[1] = c;
t+=2;
}
if(len & 1)
tl0] = c;
}

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 11:53:37 GMT

View Forum Message <> Reply to Message

You can actually do alignment without branching there (that | got from studying memset code :). |
guess that is the last thing to try now :)

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 14:06:19 GMT

View Forum Message <> Reply to Message

Page 40 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53965#msg_53965
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53965
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53966#msg_53966
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53966
https://www.ultimatepp.org/forums/index.php

mirek wrote on Mon, 18 May 2020 14:53You can actually do alignment without branching there
(that I got from studying memset code :). | guess that is the last thing to try now :)

Hi,
Sounds good, but seems hard to squeeze speed from ... (tried quite a while now).

BR, Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 15:08:11 GMT

View Forum Message <> Reply to Message

Mirek,

Here it is: The unconditional alignment. | took your idea, ditched my own, and modified your Fill3a
as follows:

void inline Fill3T(void *b, dword data, int len){
switch(len){

case 3: ((dword *)b)[2] = data;

case 2: ((dword *)b)[1] = data;

case 1: ((dword *)b)[0] = data;

case O: return;

}

__ml128iq=_mm_setl epi32(*(int¥)&data);
_ m128i*w = (__m128i*)b;

if(len >= 32) {

_ m128i*e = (__m128i*)b + (len>>2) - 8;
if(len > 1024*1024 / 16 && ((uintptr_t)w & 3) == 0) {// for really huge data, bypass the cache
_mm_storeu_sil28(w, q); // Head align
int s=(-((int)((uintptr_t)b)>>2))&0x3;

w = (__m128i*) ((dword*)b) + s;

do{
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
Iwhile(w<=e);

_mm_sfence();

}

else

Page 41 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53967#msg_53967
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53967
https://www.ultimatepp.org/forums/index.php

do {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
while(w<=e);

}

if(len & 16) {
_mm_storeu_sil28(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
}

if(len & 8) {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
}

if(len & 4) {
_mm_storeu_sil128(w, q);

}
_mm_storeu_sil128((_m128i*) (((dword*)b) + len - 4), q); // Tail align

}

| made some other changes too and this one is slightly faster on short transfers while equals
Fill3a() on longer ones. The improvement is more significant on MSBT19 / MSBT19x64.

In order to get real fast short transfers, the function must be 'inline’. | think this necessitates two
variants of the final function. (I have seen that BufferPainter paints most of the time with really
short fills, so inlining really makes a difference there.)

Best regards,

Tom

P.S. My cache threshold is still at 8M...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 16:12:37 GMT

View Forum Message <> Reply to Message

Well, my full idea was to align for len >= 32 always and MAYBE have some benefit from the fact

Page 42 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53968#msg_53968
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53968
https://www.ultimatepp.org/forums/index.php

that stores are now aligned (even perhaps use aligned version). Sources diverge on actuall
performance, but it might be around 10%. In any case, MSC memset does this...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 16:28:52 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Mon, 18 May 2020 17:08

In order to get real fast short transfers, the function must be 'inline'. | think this necessitates two
variants of the final function. (I have seen that BufferPainter paints most of the time with really
short fills, so inlining really makes a difference there.)

Well, CLANG inlines all Fill3 variants without me asking him to do it, so | guess | have zero
problems to have it in the header...

Quote:P.S. My cache threshold is still at 8M...

What are your CPU L1/L2/L3 caches?

What happens if you move that to 1M, 12M, 16M? (I mean, how much penalty you get?)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 18:57:20 GMT

View Forum Message <> Reply to Message

Hi,
My CPU here is Intel(R) Core(TM) i7-4790K:

https://ark.intel.com/content/www/us/en/ark/products/80807/i
ntel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html

Not surprisingly, they say it has an 8M 'smart cache'.

Please find attached two CSV files portraying execution time in ns for each call in average. The
length is in dwords. Fill3a is there for reference and Fill3T is using 64 dword threshold for
streaming in one and 2M dword (8MB) threshold in the other file. While not portrayed here,
increasing the threshold above 32MB decreases the performance from 1.5 ms to 3.6 ms for a 32
MB buffer.

Page 43 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53970#msg_53970
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53970
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53972#msg_53972
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53972
https://www.ultimatepp.org/forums/index.php

Best regards,

Tom

File Attachnents

1) Fill3T-cache-conparison. 7z, downl oaded 257 tines

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 19:20:28 GMT

View Forum Message <> Reply to Message

Hi,
It looks that luckily CPUID reveals cache information:

https://www.intel.com/content/www/us/en/architecture-and-tec
hnology/64-ia-32-architectures-software-developer-vol-2a-man ual.html

Initial value in EAX 80000006H

ECX:

Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.

Bits 15 - 12: L2 Associativity field.
Bits 31 - 16: Cache size in 1K units.

Could we use this?
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Mon, 18 May 2020 19:40:50 GMT

View Forum Message <> Reply to Message

Hi Mirek,

Something like this, maybe... I'm not quite sure as this method reports 16M cache for me --
although this works quite well for me:

static int cachesize=999;

Page 44 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6083
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53973#msg_53973
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53973
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53974#msg_53974
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53974
https://www.ultimatepp.org/forums/index.php

INITBLOCK({

#ifdef COMPILER_MSC

int cpulnfo[4];

Zero(cpulnfo);

__cpuid(cpulnfo, 0x80000006);

#else

unsigned int cpulnfo[4];

Zero(cpulnfo);

__get_cpuid(0x80000006, &cpulnfo[0], &cpulnfo[l], &cpulnfo[2], &cpulnfo[3]);
#endif
cachesize=1024*(cpulnfo[2]>>16)*(cpulnfo[2]&0xff);
I3

void inline Fill3T(void *b, dword data, int len){
switch(len){

case 3: ((dword *)b)[2] = data;

case 2: ((dword *)b)[1] = data;

case 1: ((dword *)b)[0] = data;

case O: return;

}

__m128iq=_mm_setl_ epi32(*(int*)&data);
__m128i*w = (__m128i*)b;

if(len >= 32) {

__m128i*e =(__m128i*)b + (len>>2) - §;
if(len >= (cachesize>>2) && ((uintptr_t)w & 3) == 0) {// for really huge data, bypass the cache
_mm_storeu_sil28(w, q); // Head align
int s=(-((int)((uintptr_t)b)>>2))&0x3;

w = (__m128i*) ((dword*)b) + s;

do {
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
lwhile(w<=e);

_mm_sfence();

}

else

do {
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_sil28(w++, q);

Page 45 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
while(w<=e);

}

if(len & 16) {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
}

if(len & 8) {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
}

if(len & 4) {
_mm_storeu_si128(w, q);

}
_mm_storeu_sil128((_m128i*) (((dword*)b) + len - 4), q); // Tail align

}

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 19:56:57 GMT

View Forum Message <> Reply to Message

Toml wrote on Mon, 18 May 2020 20:57Hi,
My CPU here is Intel(R) Core(TM) i7-4790K:

https://ark.intel.com/content/www/us/en/ark/products/80807/i
ntel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html

Not surprisingly, they say it has an 8M 'smart cache'.

Please find attached two CSV files portraying execution time in ns for each call in average. The
length is in dwords. Fill3a is there for reference and Fill3T is using 64 dword threshold for
streaming in one and 2M dword (8MB) threshold in the other file. While not portrayed here,
increasing the threshold above 32MB decreases the performance from 1.5 ms to 3.6 ms for a 32
MB buffer.

Page 46 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53975#msg_53975
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53975
https://www.ultimatepp.org/forums/index.php

Best regards,

Tom

If | interpret these numbers correctly, it looks like around 4MB potential drop because of cache
bypass starts to be diminish, right?

Thing is, | am afraid that making this dynamic will cause a lot of problems, starting with
perfromance - it is after all another read from the memory. | would settle for some compromise
constant there. Like 4MB... :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 18 May 2020 22:02:48 GMT

View Forum Message <> Reply to Message

What about this:

never_inline
void HugeFill(dword *t, dword c, int len)
{
__ml28ivald = _mm_setl epi32(*(int*)&c);
auto Set4S = [&](int at) { _mm_stream_si128((_m128i *)(t + at), val4); };
while((uintptr_t)t & 15) {// align to 16 bytes for SSE
*++ = c;
len--;
}
while(len >= 16) {
Set4S(0);
Set4S(4);
Set4S(8);
Set4S(12);
t += 16;
len -=16;
}
while(len--)
*t++ = C;
_mm_sfence();

}

void Fill6(dword *t, dword c, int len)

{
if(len >= 4) {

Page 47 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53977#msg_53977
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53977
https://www.ultimatepp.org/forums/index.php

__ml28ivald = _mm_setl epi32(*(int*)&c);
auto Set4 = [&](int at) { _mm_storeu_si128((_m128i *)(t + at), vald); };
if(len > 4*1024*1024 / 4) {
HugeFill(t, c, len);
return;
}
while(len >= 16) {
Set4(0);
Set4(4);
Set4(8);
Set4(12);
t += 16;
len -= 16;
}
if(len & 8) {
Set4(0);
Set4(4);
t+=8;
}
if(len & 4) {
Set4(0);
t+=4,
}
}
if(len & 3)
t[0] = t[(len & 2) >> 1] =t[(len & 2) & ((len & 1) << 1)] = c;
}

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 19 May 2020 06:59:08 GMT

View Forum Message <> Reply to Message

Hi,
Fill6 fails integrity check due to a small indexing glitch here:
if(len & 8) {
Set4(0);
Set4(8); // << Should be 4
t+=8;
}

However, Fill3T is still faster below 64 and mostly on par above that on my i7.

And thanks! | do indeed enjoy the final alignment trick! :) Very clever!

Page 48 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53979#msg_53979
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53979
https://www.ultimatepp.org/forums/index.php

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 19 May 2020 07:14:34 GMT

View Forum Message <> Reply to Message

Yeah, there was another bug in it, | should test more before posting.

In retrospective, while the trick is nice, | do not think it is worth it. But if you wanted to experiment
with this path, | have found the way how to extend / simplify this. The basic idea is

int nlen = -len;

t[1 & HIBYTE(nlen)] = c;
nlen++;

t[2 & HIBYTE(nlen)] = c;
nlen++;

t[3 & HIBYTE(nlen)] = c;

(at some point, nlen will become > 0 and thus HIBYTE goes from Oxff to 0x00, thus "grounding"”
indices).

Also, | would like to try to explain why | am trying to beat Fill3T. It is about those switches, while

switch(len) {
case O:
case 1:
case 2:
default:

}

looks magnificent, it is actually 2 "unstable" branch predictions and quite a bit of code to compute
the target address. So

if(len & 2) {

}
iflen & 1) {

}

Page 49 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53980#msg_53980
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53980
https://www.ultimatepp.org/forums/index.php

should be on par - 2 branch predictions and maybe a bit less of code....

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 19 May 2020 07:49:01 GMT

View Forum Message <> Reply to Message

Also, a little note about your testing code: You loop over the same "len" many times and measure
that. The problem is that first pass setups branch prediction so all other passes are predicted. If
"len" is changing, prediction fails and you might get different results....

Which explains why my tests, which feeds random lens, shows a bit different picture... :)

All'in all, I think in the end we will just need to test this with Painter....

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 19 May 2020 09:32:39 GMT

View Forum Message <> Reply to Message

Three more variants, based on your FillT. Fill7 is basically identical, with a little trick added (hope
you like it). Fill7a has different "frontend". Fill8 is not performing very well, adding that just so that
you know | have tested that variant too... :)

Fill7 and Fill7a seem to be basically equal and maybe just a tiny bit faster than Fill3T....

void Fill7(dword *t, dword data, int len){
switch(len) {

case 3: t[2] = data;

case 2: t[1] = data;

case 1: t[0] = data;

case O: return;

}

~_ml28ivald = _mm_setl epi32(data);
auto Set4 = [&](int at) { _mm_storeu_si128((__m128i *)(t + at), val4); };

Setd(len - 4); // fill tail

if(len >= 32) {

if(len >= 1024*1024) { // for really huge data, bypass the cache
HugeFill(t, data, len);

Page 50 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53981#msg_53981
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53981
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53982#msg_53982
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53982
https://www.ultimatepp.org/forums/index.php

return;
}
const dword *e =t + len - 32;
do{
Set4(0); Set4(4); Set4(8); Set4(12);
Set4(16); Set4(20); Setd(24); Set4(28);
t+=32;
}
while(t <= e);
}
if(len & 16) {
Set4(0); Set4(4); Set4(8); Set4(12);
t += 16;
}
if(len & 8) {
Set4(0); Set4(4);
t+=8;
}
if(len & 4)
Set4(0);
}

void Fill7a(dword *t, dword data, int len){
if(len < 4) {

if(len & 2) {

t[0] = t[1] = data;

t+=2;

}

if(len & 1)

t[0] = data;

return;

}

__ml28ivald = _mm_setl epi32(data);
auto Set4 = [&](int at) { _mm_storeu_si128((_m128i *)(t + at), val4); };

Setd(len - 4); // fill tail
if(len >=32) {
if(len >= 1024*1024) { // for really huge data, bypass the cache
HugeFill(t, data, len);
return;
}
const dword *e =t + len - 32;
do {
Set4(0); Set4(4); Set4(8); Set4(12);
Set4(16); Set4(20); Set4(24); Set4(28);
t+=32;
}

Page 51 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

while(t <= e);

}

if(len & 16) {
Set4(0); Set4(4); Set4(8); Set4(12);
t += 16;

}

if(len & 8) {
Set4(0); Set4(4);
t+=8;

}

if(len & 4)
Set4(0);

}

void Fill8(dword *t, dword data, int len){
switch(len) {

case 3: t[2] = data;

case 2: t[1] = data;

case 1: t[0] = data;

case O: return;

}

__ml28ivald = _mm_setl epi32(data);
auto Set4 = [&](int at) { _mm_storeu_si128((__m128i *)(t + at), val4); };

Set4(len - 4); // fill tail

if(len >= 32) {

if(len >= 1024*1024) { // for really huge data, bypass the cache
HugekFill(t, data, len);
return;

}

int cnt =len >> 5;

do{
Set4(0); Set4(4); Set4(8); Set4(12);
len -= 32;

Set4(16); Set4(20); Set4(24); Set4(28);
t+=32;

}

while(len >= 32);

}

switch((len >>2) & 7) {

case 7: Set4(24);

case 6: Set4(20);

case 5: Set4(16);

case 4: Set4(12);

case 3: Set4(8);

case 2: Set4(4);

case 1: Set4(0);

Page 52 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 19 May 2020 10:35:28 GMT

View Forum Message <> Reply to Message

mirek wrote on Tue, 19 May 2020 10:49Also, a little note about your testing code: You loop over
the same "len" many times and measure that. The problem is that first pass setups branch
prediction so all other passes are predicted. If "len" is changing, prediction fails and you might get
different results....

Which explains why my tests, which feeds random lens, shows a bit different picture... :)
All'in all, I think in the end we will just need to test this with Painter....
Mirek

| wish | came to think of this benchmarking pitfall... | mean the branch prediction. Well, | agree that
we need to put it in the BufferPainter environment for real test.

Meanwhile, as you worked on 7, 7a and 8, | prepared 3T2, which avoids the switch and uses ifs
instead. Funnily, your 7a does the same, but with table offsets. :)

void inline Fill3T2(dword *b, dword data, int len){
if(len<4){

if(len&1) *b++ = data;

if(len&2){ *b++ = data; *b++ = data; }

return;

}

__m128iq=_mm_setl epi32(*(int*)&data);
__m128i*w = (__m128i*)b;

if(len >= 32) {

_ m128i*e = (__m128i*)b + (len>>2) - 8;
if(len > 4*1024*1024 / 4 && ((uintptr_t)w & 3) == 0) { // for really huge data, bypass the cache
_mm_storeu_sil28(w, q); // Head align
int s=(-((int)((uintptr_t)b)>>2))&0x3;

w = (__ml128i*) (b + s);

do {
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);

Page 53 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53983#msg_53983
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53983
https://www.ultimatepp.org/forums/index.php

_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
lwhile(w<=e);
_mm_sfence();

}

else

do {
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_si128(w++, q);
Iwhile(w<=e);

}

if(len & 16) {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
}

if(len & 8) {
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);
}

if(len & 4) {
_mm_storeu_sil128(w, q);

}
_mm_storeu_sil128((_m128i*) (b + len - 4), q); // Tail align

}

| really like the w++ incremental pointer logic over the Set4(pointer+offset). This approach seems
to give a small improvement on my system.

Next, | will test your 7 + 7a and report against 3T2.

But seriously, we need to put an end to this madness! The bang for the buck is rapidly decreasing
as working hours are increasing... :)

Best regards,

Tom

Page 54 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 19 May 2020 10:45:52 GMT

View Forum Message <> Reply to Message

[quote title=Tom21 wrote on Tue, 19 May 2020 12:35]mirek wrote on Tue, 19 May 2020 10:49
| really like the w++ incremental pointer logic over the Set4(pointer+offset). This approach seems
to give a small improvement on my system.

Compiler actually converts that to offsets anyway... (I have checked disassembly).

Quote:

But seriously, we need to put an end to this madness! The bang for the buck is rapidly decreasing
as working hours are increasing... :)

;) Well, you have started it :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 19 May 2020 11:18:01 GMT

View Forum Message <> Reply to Message

[quote title=mirek wrote on Tue, 19 May 2020 13:45]Tom1 wrote on Tue, 19 May 2020 12:35mirek
wrote on Tue, 19 May 2020 10:49

| really like the w++ incremental pointer logic over the Set4(pointer+offset). This approach seems
to give a small improvement on my system.

Compiler actually converts that to offsets anyway... (I have checked disassembly).

Quote:

But seriously, we need to put an end to this madness! The bang for the buck is rapidly decreasing
as working hours are increasing... :)

;) Well, you have started it :)

Mirek

Jlol: I admit to it! My fault... :)

Anyway, pick you choice: 7a or 3T2, but note that MSBT19 (32bit | mean) likes 3T2 better on

short transfers. CLANG, CLANGx64 and MSBT19x64 are happy with both. (But, please do your
own benchmarks, as this is just my repeated scan through different lengths with the pitfall you

Page 55 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53984#msg_53984
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53984
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53985#msg_53985
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53985
https://www.ultimatepp.org/forums/index.php

pointed out earlier.)
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 19 May 2020 14:22:08 GMT

View Forum Message <> Reply to Message

Hi,
WARNING: Something still wrong in 3T2 alignment code. | will continue to investigate it.
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 19 May 2020 23:34.03 GMT

View Forum Message <> Reply to Message

Hi Mirek,
Yes, I'm nuts... still working at this hour.

Anyway, here's a new version - Fill3T3 - that can actually handle all alignment variations (even
those not handled by 7a). Please benchmark and check for correctness:

never_inline void FillStream(dword *b, dword data, int len){

while((uintptr_t)b & 15){ // Try to align
*b++=data,

len--;

¥

__m128i*w = (__m128i *)b;

_ _ml128iq=_mm_setl epi32((int)data);

if(len>=16){

__ml28i*e =w + (len>>2) - 3;

dof

_mm_stream_si128(w++, q);
_mm_stream_si128(w++, q);
_mm_stream_si128(w++, Q);
_mm_stream_si128(w++, q);
twhile(w<e);

Page 56 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53986#msg_53986
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53986
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53989#msg_53989
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53989
https://www.ultimatepp.org/forums/index.php

}

if(len & 8) {

_mm_stream_sil28(w++, q);

_mm_stream_sil28(w++, q);

}

if(len & 4) {

_mm_stream_si128(w++, q);

}

_mm_sfence();

_mm_storeu_sil28((_m128i*)(b + len - 4), q); // Tail align

}

void inline Fill3T3(dword *b, dword data, int len){
if(len<4){

if(len&1) *b++ = data;

if(len&2){ *b++ = data; *b++ = data; }

return;

}

_ m128i*w = (__m128i *)b;
_ _ml128iq=_mm_setl epi32((int)data);

if(len >=32) {

if(len>1024*1024 && (((uintptr_t)b & 3)==0)){
FillStream(b,data,len);
return;

}

__m128i*e =w + (len>>2) - 7;
dof
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
Jwhile(w<e);

}

if(len & 16) {
_mm_storeu_si128(w++, q);
_mm_storeu_si128(w++, q);
_mm_storeu_sil28(w++, q);
_mm_storeu_sil28(w++, q);

}

if(len & 8) {
_mm_storeu_sil28(w++, q);

Page 57 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

_mm_storeu_si128(w++, q);

}
if(len & 4) {
_mm_storeu_si128(w++, q);

}
_mm_storeu_sil28((_m128i*)(b + len - 4), q); // Tail align

}

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 19 May 2020 23:52:36 GMT

View Forum Message <> Reply to Message

[quote title=Tom1 wrote on Wed, 20 May 2020 01:34]Hi Mirek,
Yes, I'm nuts... still working at this hour.

Anyway, here's a new version - Fill3T3 - that can actually handle all alignment variations (even
those not handled by 7a). Please benchmark and check for correctness:

if(len & 8) {
_mm_stream_sil28(w++, q);
_mm_stream_sil28(w++, q);

}
if(len & 4) {
_mm_stream_sil28(w++, q);

}

Yeah, | think that after filling 8MB of data, this will really have impact compared to trivial loop :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 06:22:43 GMT

View Forum Message <> Reply to Message

mirek wrote on Wed, 20 May 2020 02:52Yeah, | think that after filling 8MB of data, this will really
have impact compared to trivial loop :)

Page 58 of 92 ---- CGenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53990#msg_53990
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53990
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53991#msg_53991
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53991
https://www.ultimatepp.org/forums/index.php

Mirek
lol:
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 08:04:35 GMT

View Forum Message <> Reply to Message

Hi,

There must still be something wrong with 3T3 because applying it to BufferPainter (replacing
FillRGBA) causes artifacts in drawing. E.g. PainterExamples spiral example at 3x scale clearly
shows noise in line edges. :(

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 08:20:56 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Wed, 20 May 2020 10:04Hi,

There must still be something wrong with 3T3 because applying it to BufferPainter (replacing
FillRGBA) causes artifacts in drawing. E.g. PainterExamples spiral example at 3x scale clearly
shows noise in line edges. :(

Best regards,

Tom

My guts feeling is either the tail fill, or less likely, "e" computation. | think these are simpler code in
Fill7a.... (and actually, these are the only real difference now).

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 08:55:46 GMT

View Forum Message <> Reply to Message

Page 59 of 92 ---- Generated from Ut+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53993#msg_53993
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53993
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53994#msg_53994
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53994
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53995#msg_53995
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53995
https://www.ultimatepp.org/forums/index.php

Hi,

No, Sorry... I'll take that alarm back. There is no error in 3T3 after all. My copy of the code inside
Painter was faulty... Now | took the correct version and it is all good now.

I'm just too tired after not sleeping too much lately...
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 09:56:41 GMT

View Forum Message <> Reply to Message

So | have replaced memsetd with Fill7a, replaced RGBA fill with (new) memsetd and did
benchmarks.

Except the situation where the benchmark involves Clear of large area, numbers have not
changed... ?)

EDIT: Bug on my part, retesting...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 10:23:01 GMT

View Forum Message <> Reply to Message

OK, after retesting, I think it might be at most 3% faster. Looking at fillers, | think there is much
more time spent in AlphaBlend function - even if it is just for segment start/end pixels. Perhaps
that one should be SSE2 optimized? :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 10:41:30 GMT

View Forum Message <> Reply to Message

Hi Mirek,
Two things to consider before you go with 7a:

- 7a crashes on unaligned buffers (t&3) while 3T3 handles them all.

Page 60 of 92 ---- Generated from Ut+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53996#msg_53996
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53996
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53997#msg_53997
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53997
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53998#msg_53998
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53998
https://www.ultimatepp.org/forums/index.php

- 3T3 is faster on MSBT19 with short transfers up to 50-60 dwords.
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 10:52:53 GMT

View Forum Message <> Reply to Message

mirek wrote on Wed, 20 May 2020 13:230K, after retesting, | think it might be at most 3% faster.
Looking at fillers, | think there is much more time spent in AlphaBlend function - even if it is just for
segment start/end pixels. Perhaps that one should be SSE2 optimized? :)

Mirek
Hi,
My SSEZ2 battery is now 'discharged' for a while.... Need to recharge before next use. :)

| also did some testing on span filler with memcpy. This is based on using IMAGE_OPAQUE of
the image being rendered. It does improve the speed somewhat, but the edges cause a problem
since the edge is alpha blended even if FILL_FAST is specified. So, this needs some
reconsideration and better knowledge on the Painter internals (i.e. beyond my level...):

BufferPainter.h:

struct SpanSource {
int kind;
SpanSource(){
kind = IMAGE_OPAQUE;
}
virtual void Get(RGBA *span, int x, int y, unsigned len) = 0;
virtual ~SpanSource() {}

I3
Fillers.cpp:

void SpanfFiller::Render(int val, int len)
{
if(val == 0) {
t +=len;
s +=len;
return;
}
if(alpha = 256)
val = alpha * val >> 8;

Page 61 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=53999#msg_53999
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=53999
https://www.ultimatepp.org/forums/index.php

if(val == 256) {
if(ss->kind==IMAGE_OPAQUE) memcpy(t,s,len*sizeof(RGBA)); // apex_memcpy() would be
even faster
else{
for(inti=0;i<len;i++){
if(s[i].a == 255)
tfi] = sfiJ;
else
AlphaBlend(t[i], s[i]);
}
}
t+=len;
s +=len;
}
else {
const RGBA *e =t + len;
while(t < e)
AlphaBlendCover8(*t++, *s++, val);
}
}

Painter/Image.cpp:

struct PainterimageSpan : SpanSource, PainterimageSpanData {
LinearInterpolator interpolator;

PainterimageSpan(const PainterimageSpanData& f)
: PainterimageSpanData(f) {

interpolator.Set(xform);

kind = image.GetKindNoScan(); / Add this

}

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 10:53:01 GMT

View Forum Message <> Reply to Message

| was aware about unaligned problem, thats fixed in final version. That said, unaligned in general
should be considered illegal anyway, because otherwise hell will broke lose with Armve....

Page 62 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54000#msg_54000
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54000
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 11:01:50 GMT

View Forum Message <> Reply to Message

Quote:l was aware about unaligned problem, thats fixed in final version. That said, unaligned in
general should be considered illegal anyway, because otherwise hell will broke lose with Armveé....

But that's good to know. In this case we could drop (t&3) code entirely from 3T3 and improve
instruction cache locality for even better results on short transfers.

((Is there a way to 'cleanly crash' (whatever that might mean) an application attempting unaligned
memset? Now it just disappears from the process list at least on Windows.))

EDIT: Let me rephrase it: Is there a way to check during development that an application will
never use unaligned memset?

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 13:18:19 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Wed, 20 May 2020 13:01

EDIT: Let me rephrase it: Is there a way to check during development that an application will
never use unaligned memset?

memsetd!

Yes, put ASSERT(((uintptr_t)t & 3) == 0); to memsetd :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 13:58:30 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Wed, 20 May 2020 12:41
- 3T3 is faster on MSBT19 with short transfers up to 50-60 dwords.

Interestingly, adding "inline" to it seems to fix the problem... :) For some reason, 32-bit MSC does
not inline it unless you ask it to do so...

Page 63 of 92 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54002#msg_54002
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54002
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54003#msg_54003
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54003
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54004#msg_54004
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54004
https://www.ultimatepp.org/forums/index.php

In fact, assembler for both inlined function is virtually the same, the only difference is different tail
handling (IMO, mine is 1% esier on eye):

7a:

0017940D cmp ecx,byte +0x4
00179410 jnl 0x17942f

00179412 test cl,0x2

00179415 jz Ox17941f

00179417 mov [eax+0x4],edi
0017941A mov [eax],edi

0017941C add eax,byte +0x8
0017941F test cl,0x1

00179422 jz dword 0x1794b4
00179428 mov [eax],edi

0017942A jmp dword 0x1794b4
0017942F movd xmmoO,edi
00179433 pshufd xmmO0O,xmm0,0x0
00179438 movups [eax+ecx*4-0x10],xmmO0 <<= tail handling
0017943D cmp ecx,byte +0x20
00179440 jl 0x179486

00179442 cmp ecx,0x100000
00179448 jl 0x179457

0017944A push ecx

0017944B push edi

0017944C push eax

0017944D call dword 0x14ff88
00179452 add esp,byte +0xc
00179455 jmp short 0x1794b4
00179457 lea edx,[ecx-0x20]
0017945A lea edx,[eax+edx*4]
0017945D nop dword [eax]
00179460 movups [eax],xmmO
00179463 movups [eax+0x10],xmmO
00179467 movups [eax+0x20],xmmO
0017946B movups [eax+0x30],xmmO0
0017946F movups [eax+0x40],xmmO
00179473 movups [eax+0x50],xmmO
00179477 movups [eax+0x60],xmmO
0017947B movups [eax+0x70],xmmO0
0017947F sub eax,byte -0x80
00179482 cmp eax,edx

00179484 jna 0x179460

00179486 test cl,0x10

00179489 jz 0x17949d

0017948B movups [eax],xmmO
0017948E movups [eax+0x10],xmmO

Page 64 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

00179492 movups [eax+0x20],xmmO
00179496 movups [eax+0x30],xmmO
0017949A add eax,byte +0x40
0017949D test cl,0x8

001794A0 jz Ox1794ac

001794A2 movups [eax],xmmO
001794A5 movups [eax+0x10],xmmO
001794A9 add eax,byte +0x20
001794AC test cl,0x4

001794AF jz 0x1794b4

001794B1 movups [eax],xmmO

3T3

00179540 cmp eax,byte +0x4
00179543 jnl 0x179560
00179545 test al,0x1
00179547 jz 0x17954e
00179549 mov [edx],edi
0017954B add edx,byte +0x4
0017954E test al,0x2
00179550 jz dword 0x179607
00179556 mov [edx],edi
00179558 mov [edx+0x4],edi
0017955B jmp dword 0x179607
00179560 movd xmmaO,edi
00179564 mov ecx,edx
00179566 pshufd xmmO0O,xmmO0,0x0
0017956B cmp eax,byte +0x20
0017956E jl Ox1795c6
00179570 cmp eax,0x100000
00179575 jng 0x179589
00179577 test dI,0x3
0017957A jnz 0x179589
0017957C push eax
0017957D push edi

0017957E push edx
0017957F call dword 0x14ff88
00179584 add esp,byte +0xc
00179587 jmp short 0x179604
00179589 mov edi,eax
0017958B sar edi,0x2
0017958E sub edi,byte +0x7
00179591 shl edi,0x4
00179594 add edi,edx
00179596 mov eax,ecx
00179598 movups [eax],xmmO

Page 65 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

0017959B lea eax,[ecx+0x70]
0017959E movups [ecx+0x10],xmmO
001795A2 movups [ecx+0x20],xmmO
001795A6 movups [ecx+0x30],xmmO0
001795AA movups [ecx+0x40],xmmO
001795AE movups [ecx+0x50],xmmO
001795B2 movups [ecx+0x60],xmm0O
001795B6 sub ecx,byte -0x80
001795B9 movups [eax],xmmO
001795BC cmp ecx,edi

001795BE jc 0x179596

001795C0 mov eax,[ebp-0x14]
001795C3 mov edi,[ebp-0x18]
001795C6 test al,0x10

001795C8 jz 0x1795e3

001795CA mov eax,ecx

001795CC movups [eax],xmmO
001795CF lea eax,[ecx+0x30]
001795D2 movups [ecx+0x10],xmmO0
001795D6 movups [ecx+0x20],xmmO0
001795DA add ecx,byte +0x40
001795DD movups [eax],xmmO
001795E0 mov eax,[ebp-0x14]
001795E3 test al,0x8

001795E5 jz 0x1795f8

001795E7 mov eax,ecx

001795E9 movups [eax],xmmO
001795EC lea eax,[ecx+0x10]
001795EF add ecx,byte +0x20
001795F2 movups [eax],xmmO
001795F5 mov eax,[ebp-0x14]
001795F8 test al,0x4

001795FA jz 0x1795ff

001795FC movups [ecx],xmmO
001795FF movups [edx+eax*4-0x10],xmm0 <= TAIL

EDIT: OK, now rechecking it, it looks like 3T3 has a bit more instructions doing weird things....

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 14:15:59 GMT

View Forum Message <> Reply to Message

Hi,

This is strange, since | immediately added the inline to 7a when | started testing it. (I found out
earlier that MSBT19 did not do it for me.) Now | did a new run and the result is in the attached csv.

Page 66 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54005#msg_54005
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54005
https://www.ultimatepp.org/forums/index.php

Can you post the latest 7a if it is any different compared to the one posted here above?
Best regards,

Tom

File Attachnents

1) nenset.csv, downl oaded 282 tines

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 15:16:51 GMT

View Forum Message <> Reply to Message

Toml wrote on Wed, 20 May 2020 16:15Hi,

This is strange, since | immediately added the inline to 7a when | started testing it. (I found out
earlier that MSBT19 did not do it for me.) Now | did a new run and the result is in the attached csv.

Can you post the latest 7a if it is any different compared to the one posted here above?
Best regards,

Tom

It is now in trunk as memsetd....

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 15:31:48 GMT

View Forum Message <> Reply to Message

| am getting quite different picture:

int bsize=8*1024*1024;
Buffer<dword> b(bsize, 0);
dword cw = 123;

String result="\"N\",\"memsetd(O\" \"Fill3T3(\"\r\n";
for(int len=1;len<=bsize;){

int maximum=100000000/len;

int64 t0O=usecs();

for(inti=0; i < maximum; i++)

Page 67 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6085
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54006#msg_54006
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54006
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54007#msg_54007
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54007
https://www.ultimatepp.org/forums/index.php

memsetd(~b, cw, len);

int64 t1=usecs();

for(inti=0; i < maximum; i++)

Fill3T3(~b, cw, len);

int64 t2=usecs();

String r = Format("%d,%f,%f",len,1000.0*(t1-t0)/maximum,1000.0*(t2-t1)/maximum);
RLOG(r);

result.Cat(r + "\r\n");

if(len<64) len++;

else len*=2;

}

SaveFile(GetHomeDirFile("memset.csv"),result);

| am starting to wonder if there is difference between our MSC 32bit compilers...

File Attachnments

1) nenset.csv, downl oaded 261 tines

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Wed, 20 May 2020 15:37:16 GMT

View Forum Message <> Reply to Message

Ha, funny. It depends on order of functions tested. If | test memsetd second, | am getting different
numbers :)

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Wed, 20 May 2020 17:51:10 GMT

View Forum Message <> Reply to Message

mirek wrote on Wed, 20 May 2020 18:31l am getting quite different picture:

int bsize=8*1024*1024;
Buffer<dword> b(bsize, 0);
dword cw = 123;

String result="\"N\"\"memsetd()\" \"Fill3T3()\"\r\n";
for(int len=1;len<=bsize;){
int maximum=100000000/len;
int64 t0O=usecs();
for(inti=0; i < maximum; i++)
memsetd(~b, cw, len);
int64 t1=usecs();

Page 68 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6086
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54008#msg_54008
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54008
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54010#msg_54010
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54010
https://www.ultimatepp.org/forums/index.php

for(inti = 0; i < maximum; i++)

Fill3T3(~b, cw, len);

int64 t2=usecs();

String r = Format("%d,%f,%f",len,1000.0*(t1-t0)/maximum,1000.0*(t2-t1)/maximum);
RLOG(r);

result.Cat(r + "\r\n");

if(len<64) len++;

else len*=2;

}

SaveFile(GetHomeDirFile("memset.csv"),result);

| am starting to wonder if there is difference between our MSC 32bit compilers...
Hi,

No wonder we ended up with (very slightly) different approach... Your results are more or less
reversed to what I'm getting. | tried to reorder the calls too, but without any observable difference.

It's either the different CPUs or a different compiler. My compiler is:

Microsoft (R) C/C++ Optimizing Compiler Version 19.21.27702.2 for x86
Copyright (C) Microsoft Corporation. All rights reserved.

Should | downgrade or upgrade?...

Anyway, seriously I'm pleased with the final result here. The filler is now better than anything
before and can be used generally for all clearing/presetting of buffers. | use this a lot in signal
processing in addition to clearing the ImageBuffer for BufferPainter. After all, the ImageBuffer
needs to be cleared or preset to user preference background color once before each display
update. It is much better to have a 1.5 ms delay instead of 3.6 ms delay before drawing
approximately 10-20 ms worth of vector map data on the screen. :)

Should this new memsetd() now be deployed all over the u++? | mean e.g. Core/Topt.h :: Fill?
Thank you a lot for your great work on this! :)

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Thu, 21 May 2020 07:04.01 GMT

View Forum Message <> Reply to Message

[quote title=Tom1 wrote on Wed, 20 May 2020 19:51]mirek wrote on Wed, 20 May 2020 18:31

Page 69 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54011#msg_54011
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54011
https://www.ultimatepp.org/forums/index.php

Should this new memsetd() now be deployed all over the u++? | mean e.g. Core/Topt.h :: Fill?

IDK, maybe as specialisation...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Thu, 21 May 2020 11:28:28 GMT

View Forum Message <> Reply to Message

OK, so | could not stop digging and found last important ingredient: alignment matters!

void FillX(void *p, dword data, int len)
{
dword *t = (dword *)p;
if(len < 4) {
if(len & 2) {
t[0] = t[1] = t[len - 1] = data;
return;
}
if(len & 1)
t[0] = data;
return;

}

__ml28ivald = _mm_setl epi32(data);
auto Set4 = [&](int at) { _mm_storeu_si128((_m128i *)(t + at), val4); };

Setd(len - 4); // fill tail
if(len >= 16) {
Set4(0); // align up on 16 bytes boundary
const dword *e =t + len;
t = (dword *)(((uintptr_t)t | 15) + 1);
len=e-t;
e -=16;
if(len >=1024*1024) { // for really huge data, bypass the cache
huge_memsetd(t, data, len);
return;
}
while(t <=e) {
Set4(0); Set4(4); Set4(8); Set4(12);
t +=16;
}
}

Page 70 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54014#msg_54014
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54014
https://www.ultimatepp.org/forums/index.php

if(len & 8) {
Set4(0); Set4(4);
t+=8;

}

if(len & 4)
Set4(0);

}

This is about twice as fast as Fill7a for len > 60 (up to cache bypass limit).

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Thu, 21 May 2020 14:21:30 GMT

View Forum Message <> Reply to Message

mirek wrote on Wed, 20 May 2020 16:18Tom1 wrote on Wed, 20 May 2020 13:01

EDIT: Let me rephrase it: Is there a way to check during development that an application will
never use unaligned memset?

memsetd!

Yes, put ASSERT(((uintptr_t)t & 3) == 0); to memsetd :)

Mirek

Good point! Please do!

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Thu, 21 May 2020 14:38:20 GMT

View Forum Message <> Reply to Message

Hi,

This new FillX is incredibly elegant! Congratulations Mirek! | really do like your new findings there.
You just need to rename it as memsetd() and place in the correct header in Core... :)

Best regards,

Tom

Paacge 71 of 92 ---- Generated from L+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54017#msg_54017
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54017
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54018#msg_54018
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54018
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by koldo on Thu, 21 May 2020 15:51:42 GMT

View Forum Message <> Reply to Message

Thank you all for your job. Although please review this in Redmine.

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Thu, 21 May 2020 17:22:43 GMT

View Forum Message <> Reply to Message

Hi Koldo,

| checked and #include <emmintrin.h> seems to work just fine for what we are working on. Thanks
for pointing this out.

Mirek: Agree?
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Thu, 21 May 2020 17:25:51 GMT

View Forum Message <> Reply to Message

Mirek,

| just found that there is a sweet spot at ~Ox3f alignment (i.e. 64 bytes) on my CPU. This is
presumably the L1 cache line length, if I'm not mistaken.

Best regards,
Tom
EDIT: It just looks that | cannot squeeze the benefit out as re-alignment code tends to eat what

would could possibly be achieved here. However, if allocator could allocate large blocks at even
64 byte limits, that could improve performance behind the scenes.

Subject: Re: BufferPainter::Clear() optimization
Posted by Didier on Fri, 22 May 2020 07:32:09 GMT

View Forum Message <> Reply to Message

Hello mirek ans Tom,
Grenat work hére but | have une simple question: what is the point with cache ?

Page 72 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54021#msg_54021
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54021
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54022#msg_54022
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54022
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54023#msg_54023
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54023
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54026#msg_54026
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54026
https://www.ultimatepp.org/forums/index.php

Normally cache speeds things up when you need to reaccess data just After writing it.

So filling a buffer with a constant value that is not read immediatly After in most cases isn't a
corresponding use case.

So, | think that having a fill function that doesn't use cache at all will benefit in two points:
Timing stability and more importantly, cache is not touched so it can speed up other functions
calls further

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 08:04:03 GMT

View Forum Message <> Reply to Message

Didier wrote on Fri, 22 May 2020 09:32Hello mirek ans Tom,

Grenat work hére but | have une simple question: what is the point with cache ?

Normally cache speeds things up when you need to reaccess data just After writing it.

So filling a buffer with a constant value that is not read immediatly After in most cases isn't a
corresponding use case.

So, | think that having a fill function that doesn't use cache at all will benefit in two points:
Timing stability and more importantly, cache is not touched so it can speed up other functions
calls further

Thing that started this whole issue: If you need to clear buffer for 4K screen, that is about 32MB of
data. Thats definitely more than can fit into the cache. So what really happens in that in this case
is that at some point cache runs out and you are significantly slowed down by CPU writing data
from the cache to main memory. The "fix" is to bypass the cache in this case (we have for now
established that the reasonable threshold is somewhere around 4MB).

That said, really a lot of other things were optimised thereafter, mostly on the other size of size
spectrum...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 08:05:49 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Thu, 21 May 2020 19:25

EDIT: It just looks that | cannot squeeze the benefit out as re-alignment code tends to eat what
would could possibly be achieved here. However, if allocator could allocate large blocks at even
64 byte limits, that could improve performance behind the scenes.

It cannot as alignment is important part of block information...

Mirek

Page 73 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54027#msg_54027
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54027
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54028#msg_54028
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54028
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 08:28:24 GMT

View Forum Message <> Reply to Message

So | have implemented a bunch of other functions based on info gathered during this session:

memcpyd
SVo_memset
SVO_memcpy

Now | have hopefully the last problem to tune... | have tried to put svo_memcpy to Vector::Add
grow routine and it indeed improved performance a bit. Then tried to improve this even more and
put memcpyd (which svo_memcpy is using as backend in some situations) and performance
dropped.

| believe that the problem is that memcpyd became too fat and it screws inlining. So the thing to
solve now is to find how to remove some if this fat to non-inline.... (svo_memcpy already has such
non-inlined part). Probably same should happend to memsetd too....

Subject: Re: BufferPainter::Clear() optimization
Posted by koldo on Fri, 22 May 2020 08:29:25 GMT

View Forum Message <> Reply to Message

One question. To use these new features, is it necessary to set compiler flags, like /arch:AVX in
Visual Studio?

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 22 May 2020 09:13:48 GMT

View Forum Message <> Reply to Message

Quote:l believe that the problem is that memcpyd became too fat and it screws inlining. So the
thing to solve now is to find how to remove some if this fat to non-inline.... (svo_memcpy already
has such non-inlined part). Probably same should happend to memsetd too....

Hi Mirek,

| think this could be the same phenomenon that caused me issues with 32-bit MSC. It was more
critical to code length and the short transfers suffered immediately when code size increased. At
the same time MSBT19x64 and both CLANG and CLANGx64 did not experience any trouble.
Perhaps MSBT19 did not do as good job with code size as the rest and on my CPU the instruction
cache was exhausted. | bet the instruction cache on your CPU is larger than what my i7 has.

At some moment | was thinking of offering the functions as two variants: inline and never_inline, in
a way that the never_inline is simply calling the inline. An then when the code benefits from it,
calling the never_inline variant.

Page 74 of 92 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54031#msg_54031
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54031
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54032#msg_54032
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54032
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54033#msg_54033
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54033
https://www.ultimatepp.org/forums/index.php

Then | also thought of handling something like <= 16 .. 32 sizes inline and the rest in a deeper
never_inline function. This would probably improve the situation without adding so much
complexity.

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 09:32:12 GMT

View Forum Message <> Reply to Message

koldo wrote on Fri, 22 May 2020 10:290ne question. To use these new features, is it necessary to
set compiler flags, like /arch:AVX in Visual Studio?

No so far. This is just SSE2, which is enabled by default for ages now...
Of course, the next logical step is to use AVX256 :)

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 22 May 2020 09:32:51 GMT

View Forum Message <> Reply to Message

koldo wrote on Fri, 22 May 2020 11:290ne question. To use these new features, is it necessary to
set compiler flags, like /arch:AVX in Visual Studio?

Hi Koldo,

Here | do not need /arch:AVX or any other compiler flag added. It's just that include (#include
<smmintrin.h> or #include <emmintrin.h>, which works for me, | think.

Best regards,
Tom

EDIT: Mirek was faster to respond! :)

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 09:39:48 GMT

Page 75 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54034#msg_54034
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54034
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54035#msg_54035
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54035
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

[quote title=Tom1 wrote on Fri, 22 May 2020 11:13]Quote:

Then | also thought of handling something like <= 16 .. 32 sizes inline and the rest in a deeper
never_inline function. This would probably improve the situation without adding so much
complexity.

In the trunk now... >=16 now handled by non-inline function. There is impact in your benchmark
(the one that runs for all sizes), less impact in my benchmark (with ransom sizes), but I think this
is the right move...

Another benefit is that we can now consider using AVX (testing for AVX presence would be
clumsy in inline function | think).

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 22 May 2020 09:46:29 GMT

View Forum Message <> Reply to Message

[quote title=mirek wrote on Fri, 22 May 2020 12:39]Tom1 wrote on Fri, 22 May 2020 11:13Quote:
Then | also thought of handling something like <= 16 .. 32 sizes inline and the rest in a deeper
never_inline function. This would probably improve the situation without adding so much
complexity.

In the trunk now... >=16 now handled by non-inline function. There is impact in your benchmark
(the one that runs for all sizes), less impact in my benchmark (with ransom sizes), but | think this
is the right move...

Another benefit is that we can now consider using AVX (testing for AVX presence would be
clumsy in inline function I think).

Mirek

The apex_memmove() did the architecture checking on startup (or first run) and then initialized
function pointers to optimal versions. | think we could do this too in some INITBLOCK.

Best regards,

Tom

Page 76 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54036#msg_54036
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54036
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54038#msg_54038
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54038
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 22 May 2020 09:59:21 GMT

View Forum Message <> Reply to Message

mirek wrote on Fri, 22 May 2020 12:39

In the trunk now... >=16 now handled by non-inline function. There is impact in your benchmark
(the one that runs for all sizes), less impact in my benchmark (with ransom sizes), but I think this
is the right move...

It looks like >32 might be better in this case... Not sure though.

BR, Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by koldo on Fri, 22 May 2020 10:47:03 GMT

View Forum Message <> Reply to Message

Dear colleagues

Please consider Sender proposal:

- Remove #include <emmintrin.h> from Blit.h
- Include #include <immintrin.h> in config.h

As now the intrinsics are included inside Upp namespace, they cannot be used later by Eigen.
config.h is included in Core.h before Upp namespace.

Thank you!

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 11:01:25 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Fri, 22 May 2020 11:59mirek wrote on Fri, 22 May 2020 12:39

In the trunk now... >=16 now handled by non-inline function. There is impact in your benchmark
(the one that runs for all sizes), less impact in my benchmark (with ransom sizes), but | think this
is the right move...

It looks like >32 might be better in this case... Not sure though.

BR, Tom

It in turn makes inlined part bigger.... | would rather be careful there.

OK, for what is worth, | have tried with AVX and | do not see any improvement. Here is the code
(for CLANG):

Page 77 of 92 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54039#msg_54039
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54039
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54040#msg_54040
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54040
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54042#msg_54042
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54042
https://www.ultimatepp.org/forums/index.php

__attribute__ ((target ("avx")))
never_inline
void memsetd_I2(dword *t, dword data, size_t len)
{
__ml28ivald = _mm_setl epi32(data);
__m256i val8 = _mm256_setl_epi32(data);
auto Set4 = [&](size_t at) { _mm_storeu_si128((__m128i *)(t + at), vald); };
#define Set8(at) _mm256_storeu_si256((__m256i *)(t + at), val8);
Set4(len - 4); // fill tail
if(len >= 32) {
if(len >=1024*1024) { // for really huge data, bypass the cache
huge_memsetd(t, data, len);
return;
}
Set8(0); // align up on 16 bytes boundary
const dword *e =t + len;
t = (dword *)(((uintptr_t)t | 31) + 1);
len=e-t;
e -=32;
while(t <=e) {
Set8(0); Set8(8); Set8(16); Set8(24);
t+= 32,
}

}
if(len & 16) {

Set8(0); Set8(8);
t += 16;

}

if(len & 8) {
Set8(0);

t+=8;

}

if(len & 4)
Set4(0);

}

inline
void FillX(void *p, dword data, size_t len)
{
dword *t = (dword *)p;
if(len < 4) {
if(len & 2) {
t[0] = t[1] = t[len - 1] = data;
return;
}
if(len & 1)
t[0] = data;

Page 78 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

return;

}

if(len >= 16) {
memsetd_[2(t, data, len);
return;

}

__ml28ivald = _mm_setl_epi32(data);
auto Set4 = [&](size_t at) { _mm_storeu_si128((__m128i *)(t + at), vald); };
Set4(len - 4); // fill tail
if(len & 8) {
Set4(0); Set4(4);
t+=8,;
}
if(len & 4)
Set4(0);
}

Frankly | am sort of happy, because GCC/CLANG way of dealing with AVX is really stupid: It
declines AVX instrinics, unless you compile whole function for AVX code, but then it starts
generating AVX opcodes everywhere and the funciton does not run on non-AVX CPUs anymore.

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 22 May 2020 11:06:14 GMT

View Forum Message <> Reply to Message

Quote: | have tried with AVX and | do not see any improvement.

So, this means SSE2 is enough to saturate the memory bus completely.

Thanks also for the new memcpy optimizations. This is equally important in many areas. :)
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by koldo on Fri, 22 May 2020 14:58:14 GMT

View Forum Message <> Reply to Message

Problem solved. Thank you!

Pacge 79 of 92 ---- Generated from L+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54043#msg_54043
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54043
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54045#msg_54045
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54045
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 22 May 2020 17:03:16 GMT

View Forum Message <> Reply to Message

Added memcpy optimized for sizeof 8 and 16 and this little neat function to make sense from it all:

template <class T>
void memcpy_t(T *t, const T *s, size_t count)
{

if((sizeof(T) & 15) == 0)

memcpydqg((dgword *)t, (const dgword *)s, count * (sizeof(T) >> 4));
else

if((sizeof(T) & 7) == 0)

memcpyq((qword *)t, (const qword *)s, count * (sizeof(T) >> 3));
else

if((sizeof(T) & 3) == 0)

memcpyd((dword *)t, (const dword *)s, count * (sizeof(T) >> 2));
else

svo_memcpy((void *)t, (void *)s, count * sizeof(T));

}

Vector<String>::ReAlloc(int newalloc)

disassembly now looks magnificent, copying elements to new buffer with SSE2...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 24 May 2020 08:20:45 GMT

View Forum Message <> Reply to Message

| have the first implementation and test of SSE2 AlphaBlend:

TIMING SSE 1 46.95 ms - 46.95 ns (58.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000
TIMING Non SSE :123.95 ms - 123.95 ns (135.00 ms / 1000000), min: 0.00 ns, max: 1.00

ms, nesting: 0 - 1000000

File Attachnents

1) Al phaBl endSSE2. cpp, downl oaded 274 tinmes

Page 80 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54046#msg_54046
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54046
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54049#msg_54049
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54049
https://www.ultimatepp.org/forums/index.php?t=getfile&id=6087
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by Oblivion on Sun, 24 May 2020 09:56:01 GMT

View Forum Message <> Reply to Message

Hello Mirek,

On Linux 5.4 and 5.6, with CLANG 10.0

TIMING SSE :119.41 ms -119.41 ns (1.06 s /1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000
TIMING Non SSE :232.41 ms - 232.41 ns (1.18 s /1000000), min: 0.00 ns, max: 1.00 ms,

nesting: 0 - 1000000

On GCC (10.1): apparently _mm_storeu_si32 is yet to be implemented. : :?

'_mm_storeu_si32' was not declared in this scope; did you mean'_mm_storeu_epi32'?
(0: 47| _mm_storeu_si32(rgba, PackRGBA(x, _mm_setzero_si128()));

(0: | _mm_storeu_epi32

Possible workaround is given here:
https://stackoverflow.com/questions/58063933/how-can-a-sse2-

function-be-missing-from-the-header-it-is-supposed-to-be-in

Best regards,
Oblivion

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 26 May 2020 11:14:43 GMT

View Forum Message <> Reply to Message

Hi!
Sorry for the delay... | was out of town for a while.

Here are my results for Windows 10 pro x64 on Core i7:

MSBT19x64:

Page 81 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54050#msg_54050
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54050
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54056#msg_54056
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54056
https://www.ultimatepp.org/forums/index.php

TIMING SSE : 37.08 ms - 37.08 ns (50.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 21000000

TIMING Non SSE :129.08 ms - 129.08 ns (142.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

MSBT19:

TIMING SSE :29.88 ms - 29.88 ns (45.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :125.88 ms - 125.88 ns (141.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

CLANG:

TIMING SSE : 37.41 ms - 37.41 ns (50.00 ms / 1000000), min: 0.00 ns, max: 2.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :125.41 ms - 125.41 ns (138.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

CLANGx64:

TIMING SSE : 37.43 ms - 37.43 ns (47.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :129.43 ms - 129.43 ns (139.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

Impressive numbers Mirek! When is this going to be available on BufferPainter?

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 26 May 2020 12:15:32 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Tue, 26 May 2020 13:14Hi!
Sorry for the delay... | was out of town for a while.

Here are my results for Windows 10 pro x64 on Core i7:

MSBT19x64:

TIMING SSE : 37.08 ms - 37.08 ns (50.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,

Page 82 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54057#msg_54057
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54057
https://www.ultimatepp.org/forums/index.php

nesting: 0 - 1000000
TIMING Non SSE :129.08 ms - 129.08 ns (142.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

MSBT19:

TIMING SSE :29.88 ms - 29.88 ns (45.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :125.88 ms - 125.88 ns (141.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

CLANG:

TIMING SSE :37.41 ms - 37.41 ns (50.00 ms / 1000000), min: 0.00 ns, max: 2.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :125.41 ms - 125.41 ns (138.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

CLANGXx64:

TIMING SSE : 37.43 ms - 37.43 ns (47.00 ms / 1000000), min: 0.00 ns, max: 1.00 ms,
nesting: 0 - 1000000

TIMING Non SSE :129.43 ms - 129.43 ns (139.00 ms / 1000000), min: 0.00 ns, max: 1.00
ms, nesting: 0 - 1000000

Impressive numbers Mirek! When is this going to be available on BufferPainter?

Best regards,

Tom

| guess by the end of the week. Still fixing bugs + there is like 8 variants to implement...

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 31 May 2020 22:39:13 GMT

View Forum Message <> Reply to Message

While optimizing memcpy and memset, | have tried a new look at othre things, like String
comparison and memhash. | think | improved String::operator== a tiny bit and now | am working
on memhash function. Decided to introduce "hash_t" and to have hash value 64 bit when
CPU_64.

After bit of experimenting, | have found these functions (one for 64 bit, other 32 bit) work best:

Page 83 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54099#msg_54099
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54099
https://www.ultimatepp.org/forums/index.php

never_inline
uint64 memhash64(const void *ptr, int len)
{
const byte *s = (byte *)ptr;
uint64 val = HASH64_CONST1,;
if(len >=8) {
if(len >= 32) {
uinté4 vall, val2, val3, val4;
vall = val2 = val3 = val4 = HASH64_ CONST],
while(len >= 32) {
vall = HASH64 CONST2 * vall + *(qword *)(s);
val2 = HASH64 _CONST2 * val2 + *(qword *)(s + 8);
val3 = HASH64 CONST?2 * val3 + *(qword *)(s + 16);
val4 = HASH64 _CONST?2 * val4 + *(qword *)(s + 24);
S += 32,
len -= 32;
}
val = HASH64 CONST?2 * val + vall;
val = HASH64 CONST?2 * val + val2;
val = HASH64 CONST?2 * val + val3;
val = HASH64 CONST?2 * val + val4;
}
const byte *e =s + len - 8;
while(s < e) {
val = HASH64 CONST2 * val + *(qword *)(s);
S +=8§;
}
return HASH64_CONST2 * val + *(qword *)(e);
}
if(len > 4) {
val = HASH64 _CONST?2 * val + *(dword *)(s);
val = HASH64_CONST2 * val + *(dword *)(s + len - 4);
return val;
}
if(len >=2) {
val = HASH64 CONST?2 * val + *(word *)(s);
val = HASH64 CONST?2 * val + *(word *)(s + len - 2);
return val;

}
return len ? HASH64 CONST2 * val + *s : val;

}

never_inline

uint64 memhash32(const void *ptr, int len)
{

const byte *s = (byte *)ptr;

uint64 val = HASH32_ CONST1;

if(len >=4) {

Page 84 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

if(len >= 16) {
uinté4 vall, val2, val3, val4;
vall = val2 = val3 = val4 = HASH32_ CONST],
while(len >= 32) {
vall = HASH32 CONST2 * vall + *(dword *)(s);
val2 = HASH32_CONST2 * val2 + *(dword *)(s + 4);
val3 = HASH32_CONST2 * val3 + *(dword *)(s + 8);
val4 = HASH32_CONST2 * val4 + *(dword *)(s + 12);
S += 16;
len -=16;
}
val = HASH32_ CONST2 * val + vall;
val = HASH32_ CONST2 * val + val2;
val = HASH32_ CONST2 * val + val3;
val = HASH32_ CONST2 * val + val4;
}
const byte *e =s + len - 4;
while(s < e) {
val = HASH32_CONST?2 * val + *(dword *)(s);
S +=4;
}
return HASH32_CONST2 * val + *(dword *)(e);
}
if(len >=2) {
val = HASH32_CONST2 * val + *(word *)(S);
val = HASH32_CONST2 * val + *(word *)(s + len - 2);
return val;

}
return len ? HASH32_ _CONST2 * val + *s : val;

}

While other "mem*" functions are easy to write tests for, hasing is a bit more complicated; can |
request some code review here? Basically, | think combination functions are OK, but | would like
to be sure it reads exactly len bytes from memory (it is ok if some are read twice...).

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by omari on Mon, 01 Jun 2020 09:24:50 GMT

View Forum Message <> Reply to Message

in uinté4 memhash32(const void *ptr, int len)

while(len >= 16) {
instead of
while(len >= 32) {

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=866
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54106#msg_54106
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54106
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Mon, 01 Jun 2020 13:47:18 GMT

View Forum Message <> Reply to Message

Well, that is intentional - it is not worth the effort of final combining unless there is more memory to
process.

In the end, 32bit variant is for now:

hash_t memhash(const void *ptr, size_t len)
{
const byte *s = (byte *)ptr;
dword val = HASH32_CONST1;
if(len >=4) {
if(len >= 16) {
dword vall, val2;
vall = val2 = HASH32_ CONST],
while(len >= 8) {
vall = HASH32_CONST2 * vall + *(dword *)(s);
val2 = HASH32_CONST2 * val2 + *(dword *)(s + 4);
S +=8;
len -= 8;
}
val = HASH32_ CONST2 * val + vall;
val = HASH32_ CONST2 * val + val2;
}
const byte *e =s + len - 4;
while(s < e) {
val = HASH32_CONST?2 * val + *(dword *)(s);
S +=4;
}
return HASH32_CONST2 * val + *(dword *)(e);
}
if(len >=2) {
val = HASH32_ CONST2 * val + *(word *)(s);
val = HASH32_ CONST2 * val + *(word *)(s + len - 2);
return val;
}
return len ? HASH32_ _CONST2 * val + *s : val;
}

(I have for now reduced that to 8 bytes being processed as | am afraid about register pressure
there - not enough registers in 386 ISA. Perhaps needs more testing...)

Subject: Re: BufferPainter::Clear() optimization

Page 86 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54111#msg_54111
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54111
https://www.ultimatepp.org/forums/index.php

Posted by Tom1 on Tue, 02 Jun 2020 11:59:53 GMT

View Forum Message <> Reply to Message

Hi Mirek,

What's the current status of the new BufferPainter optimizations? More specifically, the
AlphaBlend variants. Are they on their way to the BufferPainter?

Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Tue, 02 Jun 2020 15:43:21 GMT

View Forum Message <> Reply to Message

Well, somehow | dug myself into more mem* (memeqg*, memhash) functions and optimisations
(going 64 bit hashes)... Hopefully all is done for now (except in future, | plan to do aarch64 and
NEON optimizations too).

| think | will be able to return to AlphaBlend soon.

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Tue, 02 Jun 2020 16:31:54 GMT

View Forum Message <> Reply to Message

Hi Mirek,
Thanks for the update. I'll stay tuned on this channel.
Best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Thu, 04 Jun 2020 15:23:37 GMT

View Forum Message <> Reply to Message

SSE2 alphablending comitted. | see 10% improvements in heavily blended example. Looks like
low-hanging fruits are long gone :)

Page 87 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54128#msg_54128
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54128
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54132#msg_54132
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54132
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54133#msg_54133
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54133
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54155#msg_54155
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54155
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Thu, 04 Jun 2020 15:45:18 GMT

View Forum Message <> Reply to Message

OK, that might have been a bit too pesimistic, in some other examples the speedup is noticeable.
Somewhat expected thing however is that this is more in single-threaded mode, less in MT.

Note: | have added "NOSIMD" flag to make it possible to turn the new code off.

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Novo on Thu, 04 Jun 2020 16:07:37 GMT

View Forum Message <> Reply to Message

Problem with Mac 10.13:
/Users/ssg/.local/soft/bb-worker/worker/m-upp/build/uppsrc/Painter/AlphaBlend.h:57:2: error: use
of undeclared identifier'_mm_storeu_si64'

_mm_storeu_si64(rgba, PackRGBA(X, _mm_setzero_sil128()));

N

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Thu, 04 Jun 2020 16:48:50 GMT

View Forum Message <> Reply to Message

mirek wrote on Thu, 04 June 2020 18:23SSE2 alphablending comitted. | see 10% improvements
in heavily blended example. Looks like low-hanging fruits are long gone :)

Mirek

Hi Mirek,

Thanks! This is a welcome improvement. When rendering complex maps with MT, | see an overall
improvement of 4.. 20 % depending on the contents. None of the geometries are transparent

themselves, but the edges of strokes and fills likely do benefit from this.

Having the improvement more on the ST side is nice to have as (soft) real-time processes get less
disturbed by the GUI being rendered by the BufferPainter running in ST.

Thanks and best regards,

Tom

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54157#msg_54157
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54157
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54158#msg_54158
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54158
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54160#msg_54160
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54160
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Thu, 04 Jun 2020 18:20:34 GMT

View Forum Message <> Reply to Message

Novo wrote on Thu, 04 June 2020 18:07Problem with Mac 10.13:
/Users/ssg/.local/soft/bb-worker/worker/m-upp/build/uppsrc/Painter/AlphaBlend.h:57:2: error: use
of undeclared identifier '_mm_storeu_si64'

_mm_storeu_si64(rgba, PackRGBA(x, _mm_setzero_sil128()));

N

Should be now, eh... workarounded.

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 12 Jun 2020 10:23:09 GMT

View Forum Message <> Reply to Message

| have finally figured out how to SSE2 optimize ImageSpan code, so we have now about 20%
boost when rendering Images in Painter with bilinear interpolation...

Subject: Re: BufferPainter::Clear() optimization
Posted by Tom1 on Fri, 12 Jun 2020 10:55:58 GMT

View Forum Message <> Reply to Message

Hi Mirek,

Thanks! This also seems to improve FILL_FAST speed. Was this expected?

Now when comparing between 2020.1 and this latest enhancement altogether, rendering an
ImageBuffer by first clearing it and then adding a large raster image with FILL_FAST is now down
at 2.8 ms from 4.4 ms! :)

Thanks and best regards,

Tom

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Fri, 12 Jun 2020 14:28:04 GMT

View Forum Message <> Reply to Message

Tom1 wrote on Fri, 12 June 2020 12:55Hi Mirek,

Thanks! This also seems to improve FILL_FAST speed. Was this expected?

Page 89 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54163#msg_54163
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54163
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54220#msg_54220
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54220
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54221#msg_54221
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54221
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54222#msg_54222
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54222
https://www.ultimatepp.org/forums/index.php

Was not quite expected, but was noticed... Looks like trivial FP solution beats integer tricks...

Mirek

Subject: Re: BufferPainter::Clear() optimization
Posted by Novo on Fri, 12 Jun 2020 16:45:12 GMT

View Forum Message <> Reply to Message

Could you please fix a compilation error on Mac? It was introduced a couple of days ago.
In file included from /Users/ssg/.local/soft/bb-worker/worker/m-upp/build/uppsrc/Core/App.cpp:4:
In file included from /usr/include/mach-o/dyld.h:31:
/usr/include/mach-o/loader.h:56:2: error: unknown type name 'cpu_type_t'; did you mean
‘Upp::cpu_type_t'?

cpu_type t cputype; [* cpu specifier */

N

lusr/include/mach/machine.h:70:19: note: 'Upp::cpu_type_t' declared here
typedef integer_t cpu_type t;
N

TIA

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sat, 13 Jun 2020 08:15:24 GMT

View Forum Message <> Reply to Message

Novo wrote on Fri, 12 June 2020 18:45Could you please fix a compilation error on Mac? It was
introduced a couple of days ago.
In file included from /Users/ssg/.local/soft/bb-worker/worker/m-upp/build/uppsrc/Core/App.cpp:4:
In file included from /usr/include/mach-o/dyld.h:31:
lusr/include/mach-o/loader.h:56:2: error: unknown type name ‘cpu_type_t'; did you mean
‘Upp::cpu_type_t'?

cpu_type t cputype; [* cpu specifier */

N

/usr/include/mach/machine.h:70:19: note: 'Upp::cpu_type_t' declared here
typedef integer _t cpu_type t;

N
TIA

Hopefully fixed, please check.

Page 90 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54223#msg_54223
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54223
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54227#msg_54227
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54227
https://www.ultimatepp.org/forums/index.php

Subject: Re: BufferPainter::Clear() optimization
Posted by coolman on Sat, 13 Jun 2020 08:33:23 GMT

View Forum Message <> Reply to Message

Hi,

The commit Core: Fixed compilation issue in MacOS created compilation error on Linux

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::SysimageRealized(Upp::Image const&)":
MakeCache.cpp:(.text. ZN3Uppl6SysimageRealizedERKNS_5ImageE+0xd): undefined
reference to "Upp::IsValueCacheActive()'

MakeCache.cpp:(.text. ZN3Uppl6SysimageRealizedERKNS_ 5ImageE+0x46): undefined
reference to "Upp::ValueCacheMutex'

MakeCache.cpp:(.text. ZN3Uppl6SysimageRealizedERKNS_5ImageE+0x5b): undefined
reference to "Upp::TheValueCache()'

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::SysimageReleased(Upp::Image const&)":
MakeCache.cpp:(.text._ ZN3Uppl6SysimageReleasedERKNS_5ImageE+0xf): undefined
reference to "Upp::IsValueCacheActive()'
MakeCache.cpp:(.text._ZN3Uppl6SysimageReleasedERKNS_5ImageE+0x3f): undefined
reference to "Upp::ValueCacheMutex'
MakeCache.cpp:(.text._ZN3Uppl6SysimageReleasedERKNS_5ImageE+0x55): undefined
reference to "Upp::TheValueCache()'

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::SetMakelmageCacheMax(int)":
MakeCache.cpp:(.text._ZN3Upp20SetMakelmageCacheMaxEi+0xb): undefined reference to
“Upp::SetupValueCache(int, int, double)’

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::SetMakelmageCacheSize(int)":
MakeCache.cpp:(.text. ZN3Upp21lSetMakelmageCacheSizeEi+0xb): undefined reference to
“Upp::SetupValueCache(int, int, double)’

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::SweepMkimageCache()":
MakeCache.cpp:(.text. ZN3Uppl7SweepMkimageCacheEv+0x1): undefined reference to
"Upp::AdjustValueCache()'

lib/libDraw-lib.a(MakeCache.cpp.0): In function "Upp::Makelmage _ (Upp::ImageMaker const&,
bool)':

MakeCache.cpp:(.text. ZN3UppllMakelmage ERKNS 10ImageMakerEb+0x25): undefined
reference to "Upp::MakeValue(Upp::LRUCache<Upp::Value, Upp::String>::Maker&)'

clang: error: linker command failed with exit code 1 (use -v to see invocation)
CMakerFiles/ide-bin.dir/build.make:326: recipe for target 'bin/ide’' failed

BR, Radek

Subject: Re: BufferPainter::Clear() optimization
Posted by Novo on Sat, 13 Jun 2020 11:07:52 GMT

View Forum Message <> Reply to Message

mirek wrote on Sat, 13 June 2020 04:15

Page 91 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=133
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54228#msg_54228
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54228
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54230#msg_54230
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54230
https://www.ultimatepp.org/forums/index.php

Hopefully fixed, please check.
All three platforms are broken at this time because of linking.

Subject: Re: BufferPainter::Clear() optimization
Posted by coolman on Sat, 13 Jun 2020 12:45:46 GMT

View Forum Message <> Reply to Message

Hi,
The commit Core: Fixed to compile fixed compilation for Linux

Radek

Subject: Re: BufferPainter::Clear() optimization
Posted by Didier on Sun, 14 Jun 2020 10:45:50 GMT

View Forum Message <> Reply to Message

Hello all,

While searching for info on vectorisation techniques | stumbled on this
https://godbolt.org/

this web site proposes to compile small pieces of code (on many compilers) and examine the
assembler output: it is dedicated to getting the best performance out the code

This may help to get the best vectorisation code quicker and for many compilers

Subject: Re: BufferPainter::Clear() optimization
Posted by mirek on Sun, 14 Jun 2020 12:09:07 GMT

View Forum Message <> Reply to Message

RescaleFilter now SSE2 optimised too...

Page 92 of 92 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=133
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54232#msg_54232
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54232
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54245#msg_54245
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54245
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11010&goto=54246#msg_54246
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54246
https://www.ultimatepp.org/forums/index.php

