
Subject: strange behaviour of Vector serialization
Posted by michael79 on Sun, 31 May 2020 12:19:31 GMT
View Forum Message <> Reply to Message

Here is the serialization of struct data which contains Vector(byte):

#pragma pack(push, 1)
struct OttMessage
{
 uint16 descriptor;
 uint16 msgNum;
 int32 sec;
 int32 nsec;
	
 Vector<byte> data;
	
 void Serialize(Stream& s)
 {
 	s % descriptor % msgNum % sec % nsec % data;
 }
};
#pragma pack(pop)

DUMP of buffer show the next:
(int)buf[0] = 102
(int)buf[1] = 0
(int)buf[2] = 111
(int)buf[3] = 0
(int)buf[4] = 123
(int)buf[5] = 0
(int)buf[6] = 0
(int)buf[7] = 0
(int)buf[8] = 222
(int)buf[9] = 0
(int)buf[10] = 0
(int)buf[11] = 0
(int)buf[12] = 7
(int)buf[13] = 10
(int)buf[14] = 144
(int)buf[15] = 56
(int)buf[16] = 233
(int)buf[17] = 77

Data from Vector begins since buf[12], but the value 7 unexpectable, it was not added to Vector.

When I change Serialize() as the following, then all data correct:

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34519
https://www.ultimatepp.org/forums/index.php?t=rview&th=11044&goto=54092#msg_54092
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54092
https://www.ultimatepp.org/forums/index.php

void Serialize(Stream& s)
{
 s % descriptor % msgNum % sec % nsec;

 for(int i = 0; i < data.size(); i++)
 {
	s % data[i];
 }
}

(int)buf[0] = 102
(int)buf[1] = 0
(int)buf[2] = 111
(int)buf[3] = 0
(int)buf[4] = 123
(int)buf[5] = 0
(int)buf[6] = 0
(int)buf[7] = 0
(int)buf[8] = 222
(int)buf[9] = 0
(int)buf[10] = 0
(int)buf[11] = 0
(int)buf[12] = 10
(int)buf[13] = 144
(int)buf[14] = 56
(int)buf[15] = 233
(int)buf[16] = 77
(int)buf[17] = 188

Can anyone explane such strange behaviour?
Why I need to add Vector data one by one?

Subject: Re: strange behaviour of Vector serialization
Posted by mirek on Sun, 31 May 2020 22:19:06 GMT
View Forum Message <> Reply to Message

michael79 wrote on Sun, 31 May 2020 14:19Here is the serialization of struct data which contains
Vector(byte):

#pragma pack(push, 1)
struct OttMessage
{
 uint16 descriptor;
 uint16 msgNum;

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11044&goto=54097#msg_54097
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54097
https://www.ultimatepp.org/forums/index.php

 int32 sec;
 int32 nsec;
	
 Vector<byte> data;
	
 void Serialize(Stream& s)
 {
 	s % descriptor % msgNum % sec % nsec % data;
 }
};
#pragma pack(pop)

DUMP of buffer show the next:
(int)buf[0] = 102
(int)buf[1] = 0
(int)buf[2] = 111
(int)buf[3] = 0
(int)buf[4] = 123
(int)buf[5] = 0
(int)buf[6] = 0
(int)buf[7] = 0
(int)buf[8] = 222
(int)buf[9] = 0
(int)buf[10] = 0
(int)buf[11] = 0
(int)buf[12] = 7
(int)buf[13] = 10
(int)buf[14] = 144
(int)buf[15] = 56
(int)buf[16] = 233
(int)buf[17] = 77

Data from Vector begins since buf[12], but the value 7 unexpectable, it was not added to Vector.

When I change Serialize() as the following, then all data correct:

void Serialize(Stream& s)
{
 s % descriptor % msgNum % sec % nsec;

 for(int i = 0; i < data.size(); i++)
 {
	s % data[i];
 }
}

(int)buf[0] = 102

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

(int)buf[1] = 0
(int)buf[2] = 111
(int)buf[3] = 0
(int)buf[4] = 123
(int)buf[5] = 0
(int)buf[6] = 0
(int)buf[7] = 0
(int)buf[8] = 222
(int)buf[9] = 0
(int)buf[10] = 0
(int)buf[11] = 0
(int)buf[12] = 10
(int)buf[13] = 144
(int)buf[14] = 56
(int)buf[15] = 233
(int)buf[16] = 77
(int)buf[17] = 188

Can anyone explane such strange behaviour?
Why I need to add Vector data one by one?

Well, it would not hurt if you posted more code. So I can only guess the buf is the result of
Serialization (e.g. StoreAsString) etc...

In any case, the content of serialized code is the responsibility of class that does Serialize and
there is no guarantee about what it contains.

In this case, it is definitely needed to store the number of elements. So I guess that is what that 7
is.

Mirek

Subject: Re: strange behaviour of Vector serialization
Posted by michael79 on Sun, 31 May 2020 23:03:17 GMT
View Forum Message <> Reply to Message

I also thought that 7 is the number of array elements. I just didn't know that this amount should
also be serialized.

In fact, when the number of elements was 1, 2 appeared instead of 7.

7 appeared when there were 6 elements.

In General, I assumed that for Vector only array elements should be serialized and nothing else,

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34519
https://www.ultimatepp.org/forums/index.php?t=rview&th=11044&goto=54100#msg_54100
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54100
https://www.ultimatepp.org/forums/index.php

so adding elements to the stream one at a time looks as a workaround, although adding elements
within a loop is not a problem.

At the moment, I have not found information about how the Vector should be serialized.

Thanks for the answer.

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

