
Subject: Some Experiment with Size of Upp Executable
Posted by Lance on Mon, 27 Dec 2021 02:26:59 GMT
View Forum Message <> Reply to Message

Platform: Windows
Compiler:
 CLANG64 (11.0.0 shipped with a recent U++ downloads)
 MSBT (2022,version 19.30.30706 for x64)
All compiles in Release mode. Flags as automatically set by theide.

Test 1:
A blank Core Project
#include <Core/Core.h>

using namespace Upp;

CONSOLE_APP_MAIN
{
}

// MSBT22x64 Release		 767488	 722944	44544	5.80%
// MSBT22 Release		 644608	 611328	33280	5.16%
// CLANGx64 Release		1725952	1683968	41984	2.43%
// CLANG Release		1849856	1818112	31744	1.72%

Test 2: A blank CtrlLib project
#include <CtrlLib/CtrlLib.h>

using namespace Upp;

GUI_APP_MAIN
{
}

// MSBT22x64 Release		2274816	2070528	204288	8.98%
// MSBT22 Release		1954304	1807360	146944	7.52%
// CLANG64 Release		4946432	4752896	193536	3.91%
// CLANG Release		5321728	5179904	141824	2.66%

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Lance on Mon, 27 Dec 2021 04:28:01 GMT

Page 1 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57886#msg_57886
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57886
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

Obviously *.t(s) don't contribute too much to the size of the final executables of empty U++
projects.

Question: who contribute(s) most? In a CtrlLib, we expect all *.iml files do a part. What about the
plain Core console application?

Anyway, some more relevant/irrelevant tests.
Test 3: How well compilers optimize out unused code.
A common nonsense function used by both scenarios which will potentially increase the sizes of
final executables by noticeable amounts.
int BigFunction(int i)
{
	static const char * s[]={R"(
#include "CtrlCore.h"

namespace Upp {

#define LTIMING(x)

ImageBuffer::ImageBuffer(ImageDraw& iw)
{
	Image m = iw;
	Set(m);
}

// more omitted. basically I take a file, paste it
// multiple times, encode each in R"()", and create an
// const char* array[].
)",R"(....)"};

	int sum=0;
	for(int j=0; j<(int)strlen(s[i]); ++j)
		sum+=s[i][j];
	return sum;
}
Senario 1
#include <Core/Core.h>

using namespace Upp;

int BigFunction(int i);

CONSOLE_APP_MAIN
{
	RLOG(BigFunction(Upp::Random()%7));
}
Senario 2: With reference to BigFunction commented out.

Page 2 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57887#msg_57887
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57887
https://www.ultimatepp.org/forums/index.php

#include <Core/Core.h>

using namespace Upp;

int BigFunction(int i);

CONSOLE_APP_MAIN
{
//	RLOG(BigFunction(Upp::Random()%7));
}
Senario 3
In senario 3, I changed the BigFunction so that the const char * s[]; is move out of the function
body, with or without the static modifier. Senario 3 is otherwise same as Senario 1, with invocation
of BigFunction commented out.

Test result
			NoBigFun Sen.2	 Sen.1	 Sen.3
// MSBT22x64 Release	 767488	 767488	 770560	 769024
// MSBT22 Release	 644608	 644608	 648192	 646144
// CLANGx64 Release	1725952	1727488	1728512	1727488
// CLANG Release	1849856	1852928	1853440	1852416

Conclusion: In this test, CLANG performed very poorly. However, MS Build Tools (almost) did
exactly what's expected: simply including the definition of a function without invoking it should
have no impact on the sizes of final executables. As long as one compiler can do that, we expect
others (eg. CLANG) to catch up in the future.

And It makes sense to encapsulate big objects in functions.

Out of random search of U++ code, I noticed that mirek actually did very well on this. Some other
code could potentially benefit from this kind of audit:
#include "SDL2GL.h"

namespace Upp {

const static VectorMap<dword, dword> SDL_key_map = {
//	{ SDLK_BACKSPACE, K_BACK },
	{ SDLK_BACKSPACE, K_BACKSPACE },
	{ SDLK_TAB, K_TAB },
	{ SDLK_SPACE, K_SPACE },
	{ SDLK_RETURN, K_RETURN },

	{ SDLK_LSHIFT, K_SHIFT_KEY },
	{ SDLK_LCTRL, K_CTRL_KEY },
	{ SDLK_LALT, K_ALT_KEY },
	{ SDLK_CAPSLOCK, K_CAPSLOCK },
	{ SDLK_ESCAPE, K_ESCAPE },

Page 3 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	{ SDLK_PAGEUP, K_PAGEUP },
	{ SDLK_PAGEDOWN, K_PAGEDOWN },
	{ SDLK_END, K_END },
	{ SDLK_HOME, K_HOME },
	{ SDLK_LEFT, K_LEFT },
	{ SDLK_UP, K_UP },
	{ SDLK_RIGHT, K_RIGHT },
	{ SDLK_DOWN, K_DOWN },
	{ SDLK_INSERT, K_INSERT },
	{ SDLK_DELETE, K_DELETE },

	{ SDLK_KP_0, K_NUMPAD0 },
	{ SDLK_KP_1, K_NUMPAD1 },
	{ SDLK_KP_2, K_NUMPAD2 },
	{ SDLK_KP_3, K_NUMPAD3 },
	{ SDLK_KP_4, K_NUMPAD4 },
	{ SDLK_KP_5, K_NUMPAD5 },
	{ SDLK_KP_6, K_NUMPAD6 },
	{ SDLK_KP_7, K_NUMPAD7 },
	{ SDLK_KP_8, K_NUMPAD8 },
	{ SDLK_KP_9, K_NUMPAD9 },
	{ SDLK_KP_MULTIPLY, K_MULTIPLY },
	{ SDLK_KP_PLUS, K_ADD },
	{ SDLK_KP_PERIOD, K_SEPARATOR },
	{ SDLK_KP_MINUS, K_SUBTRACT },
	{ SDLK_KP_PERIOD, K_DECIMAL },
	{ SDLK_KP_DIVIDE, K_DIVIDE },
	{ SDLK_SCROLLLOCK, K_SCROLL },
	{ SDLK_KP_ENTER, K_ENTER },
	
	{ SDLK_F1, K_F1 },
	{ SDLK_F2, K_F2 },
	{ SDLK_F3, K_F3 },
	{ SDLK_F4, K_F4 },
	{ SDLK_F5, K_F5 },
	{ SDLK_F6, K_F6 },
	{ SDLK_F7, K_F7 },
	{ SDLK_F8, K_F8 },
	{ SDLK_F9, K_F9 },
	{ SDLK_F10, K_F10 },
	{ SDLK_F11, K_F11 },
	{ SDLK_F12, K_F12 },

	{ SDLK_a, K_A },
	{ SDLK_b, K_B },
	{ SDLK_c, K_C },
	{ SDLK_d, K_D },
	{ SDLK_e, K_E },

Page 4 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	{ SDLK_f, K_F },
	{ SDLK_g, K_G },
	{ SDLK_h, K_H },
	{ SDLK_i, K_I },
	{ SDLK_j, K_J },
	{ SDLK_k, K_K },
	{ SDLK_l, K_L },
	{ SDLK_m, K_M },
	{ SDLK_n, K_N },
	{ SDLK_o, K_O },
	{ SDLK_p, K_P },
	{ SDLK_q, K_Q },
	{ SDLK_r, K_R },
	{ SDLK_s, K_S },
	{ SDLK_t, K_T },
	{ SDLK_u, K_U },
	{ SDLK_v, K_V },
	{ SDLK_w, K_W },
	{ SDLK_x, K_X },
	{ SDLK_y, K_Y },
	{ SDLK_z, K_Z },
	{ SDLK_0, K_0 },
	{ SDLK_1, K_1 },
	{ SDLK_2, K_2 },
	{ SDLK_3, K_3 },
	{ SDLK_4, K_4 },
	{ SDLK_5, K_5 },
	{ SDLK_6, K_6 },
	{ SDLK_7, K_7 },
	{ SDLK_8, K_8 },
	{ SDLK_9, K_9 },

	{ K_CTRL|219, K_CTRL_LBRACKET },
	{ K_CTRL|221, K_CTRL_RBRACKET },
	{ K_CTRL|0xbd, K_CTRL_MINUS },
	{ K_CTRL|0xc0, K_CTRL_GRAVE },
	{ K_CTRL|0xbf, K_CTRL_SLASH },
	{ K_CTRL|0xdc, K_CTRL_BACKSLASH },
	{ K_CTRL|0xbc, K_CTRL_COMMA },
	{ K_CTRL|0xbe, K_CTRL_PERIOD },
	{ K_CTRL|0xbe, K_CTRL_SEMICOLON },
	{ K_CTRL|0xbb, K_CTRL_EQUAL },
	{ K_CTRL|0xde, K_CTRL_APOSTROPHE },

	{ SDLK_PAUSE, K_BREAK }, // Is it really?

	{ SDLK_PLUS, K_PLUS },
	{ SDLK_MINUS, K_MINUS },

Page 5 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	{ SDLK_COMMA, K_COMMA },
	{ SDLK_PERIOD, K_PERIOD },
	{ SDLK_SEMICOLON, K_SEMICOLON },

	{ SDLK_SLASH, K_SLASH },
	{ SDLK_CARET, K_GRAVE },
	{ SDLK_LEFTBRACKET, K_LBRACKET },
	{ SDLK_BACKSLASH, K_BACKSLASH },
	{ SDLK_RIGHTBRACKET, K_RBRACKET },
	{ SDLK_QUOTEDBL, K_QUOTEDBL }
};

Majority of the occurrences seem to be from plugin(wrapping of c source libraries). These are
quite difficult to fix without actually touch the imported source codes. Ideally a parser should be
created to automate the job if it's decided to be of significant savings.

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Lance on Mon, 27 Dec 2021 04:45:42 GMT
View Forum Message <> Reply to Message

test 4: Unused class member has no cost.

Test code
#include <Core/Core.h>

using namespace Upp;

int BigFunction(int);

struct C
{
	void DoNothing(){}
	int Call(){ return BigFunction(1); }
};

CONSOLE_APP_MAIN
{
	C().DoNothing();
}

With BigFunction() same as Senario 1&2 in the last test. Both CLANGx64 and MSBT22x64
produced the same results as in Senario 2 in test 3, respectively. (Modern) C++ compilers (seem
to) do very well on optimize out unused member functions. I know the test is not very well
designed and is not convincing but let's believe in this until it's proven wrong. :lol:

Page 6 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57888#msg_57888
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57888
https://www.ultimatepp.org/forums/index.php

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Novo on Mon, 27 Dec 2021 15:09:46 GMT
View Forum Message <> Reply to Message

If you are interested in binary size of code produced by a compiler, you can take a look at a
map-file.
There are tools which parse map-files and present info in a more user-friendly way.

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Lance on Mon, 27 Dec 2021 15:51:09 GMT
View Forum Message <> Reply to Message

Hi Novo:

Thank you for the info. Could you give a quick link to introduce me to map-file tools, etc?

I was trying to figure out how parts of Core are pulled into the final executable to make what it is.

Turns out plugin/z, the only plugin Core used, should not be blamed.

In <plugin/z/lib/crc32.h>, I manage to encapsulate
local const z_crc_t FAR _crc_table[TBLS][256];
in a function call; it will increase the executable size of Blank Core project to 769024 b (I used only
MSBT22x64, as it outperforms CLANG) from 767488. inline the function doesn't change anything:
so there is indeed potential cost on size by hiding it in a function if it's used. Then I removed
reference to it by changing relevant lines in <Core/App.h> to something like
#define CONSOLE_APP_MAIN \
void ConsoleMainFn_(); \
 \
int main(int argc, char *argv[]) { \
/*	UPP::AppInit__(argc, (const char **)argv); \
	UPP::AppExecute__(ConsoleMainFn_); \
	UPP::AppExit__(); \
	return UPP::GetExitCode(); */\
} \
 \
void ConsoleMainFn_() to produce a do-nothing main(), now the executable size go down to
745472 bytes. So the cost is definity in Core itself.

As a contrast, a blank C++(no U++) console produces an executable of 109056B.

These are cost paid for U++ facilities, and its 0 or all, not pay as you go.

I still do not have a answer to my question, but it seems not worth pursuing any further.

Page 7 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57895#msg_57895
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57895
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57896#msg_57896
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57896
https://www.ultimatepp.org/forums/index.php

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Novo on Mon, 27 Dec 2021 17:34:53 GMT
View Forum Message <> Reply to Message

amap - it should be able to read map-files created with msvc, gcc, and clang.

Subject: Re: Some Experiment with Size of Upp Executable
Posted by Lance on Mon, 27 Dec 2021 18:19:06 GMT
View Forum Message <> Reply to Message

Great, thank you Novo!

Page 8 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57898#msg_57898
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57898
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11712&goto=57901#msg_57901
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57901
https://www.ultimatepp.org/forums/index.php

