
Subject: Know what you're using. Size of some common types.
Posted by Lance on Mon, 27 Dec 2021 18:33:50 GMT
View Forum Message <> Reply to Message

Test result

Now I have redone the test in Release mode, the result is not as eye-catching.

Event<> is of the same size as void *, this is better than I had expected. Of course actual memory
used might be more than that: a thisfn with the sizeof of member function pointer and an object
pointer for this will have difficulty to fit in the room for a void *.

Using 64 bit for context. I would think a ScrollBar is too big for the job it does. Ideally it should be
done without containing 4 Buttons or Button should somehow be compacted to use significantly
less room and leave some functions to derived class or optionally(pay per use) memory allocated
from heap.

Anyway, the result is quite satisfying and reassuring.

BTW, test program:#include <CtrlLib/CtrlLib.h>
#include <GridCtrl/GridCtrl.h>
#include <TabBar/TabBar.h>

using namespace Upp;
#define SZ(t) "\n"#t"\t" << sizeof(t) /*<<"\t"<<alignof(t)*/

GUI_APP_MAIN
{
	String s;
	s	<< SZ(void *)
		<< SZ(Value)
		<< SZ(String)
		<< SZ(Event<>)
		<< SZ(Vector<int>)
		<< SZ(Button)
		<< SZ(EditField)
		<< SZ(ScrollBar)
		<< SZ(TabBarCtrl)
		<< SZ(ArrayCtrl)
		<< SZ(GridCtrl);
	RLOG(s);
}

File Attachments
1) a.png, downloaded 637 times

Page 1 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57902#msg_57902
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57902
https://www.ultimatepp.org/forums/index.php?t=getfile&id=6553
https://www.ultimatepp.org/forums/index.php

Subject: Re: Know what you're using. Size of some common types.
Posted by Klugier on Mon, 27 Dec 2021 18:58:22 GMT
View Forum Message <> Reply to Message

Hello Lance,

Could you tell us more what is the root cause of your problems? Today, you created several
threads about optimization. What is the reason of it? Do you want to write application on some
embedded system?

In order to understand Button size problem it would be good to know the size of Ctrl (The class
from which all controls inherits) and Pusher (Base class for Button). I am also analyzing ScrollBar
code and it seems that for most themes we do not need prev2 and next2 buttons:

Button prev, prev2, next, next2;

I could imagine themes without buttons (like current KDE one). In this case keeping four buttons
on stack seems like a waste. It should be replaced with something like std::optional<Button>
(Upp::One):

One<Button> prev, prev2, next, next2;

Klugier

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Mon, 27 Dec 2021 19:32:31 GMT
View Forum Message <> Reply to Message

Hi Klugier:

Thank you for being responsive.

No I am not doing embedding developing. Just out of curiosity. :lol:

Regards,
Lance

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Mon, 27 Dec 2021 19:37:46 GMT
View Forum Message <> Reply to Message

BTW, theming is something I almost have 0 knowledge. Any suggestion on which part of uppsrc
or examples/references/tutorials etc, I should take a first look at?

Page 2 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1517
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57903#msg_57903
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57903
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57904#msg_57904
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57904
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57905#msg_57905
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57905
https://www.ultimatepp.org/forums/index.php

Subject: Re: Know what you're using. Size of some common types.
Posted by Klugier on Mon, 27 Dec 2021 20:42:48 GMT
View Forum Message <> Reply to Message

Hello Lance,

You should read documentation page about Chameleon. You could find it here. Code sample
could be find in reference/Chameleon.

Klugier

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 28 Dec 2021 01:29:56 GMT
View Forum Message <> Reply to Message

Thanks, Klugier! It's going to take me a while to digest the materials.

Subject: Re: Know what you're using. Size of some common types.
Posted by Novo on Tue, 28 Dec 2021 04:17:29 GMT
View Forum Message <> Reply to Message

It is possible to reduce size of data structures by eliminating padding gaps ...

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 28 Dec 2021 19:27:43 GMT
View Forum Message <> Reply to Message

Novo:

By moving similarly algined items together (combined two seperated bitfield section, and move
int8 item together with them)
	int8 push;
	int8 light;
	bool horz:1;
	bool jump:1;
	bool track:1;
	bool autohide:1;
	bool autodisable:1;
	bool is_active:1;
We can save like 16 bytes on 64 bit platform. If we try harder, like declaring linesize, etc as int8,
we can save some more bytes. But these are all marginal.

What I have in mind is to get rid of the 4 Buttons completely. That way we can save around 1K in

Page 3 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1517
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57909#msg_57909
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57909
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57911#msg_57911
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57911
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57914#msg_57914
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57914
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57931#msg_57931
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57931
https://www.ultimatepp.org/forums/index.php

each ScrollBar object. ScrollBar is definitely a class that is worth rewritten. The rewriting work
might even not be too difficult.

Here is a function from ScrollBar.cpp
int SkrollBar::GetMousePart()
{
	int q = -1;
	for(int i = 2; i >= 0; i--)
		if(HasMouseIn(GetPartRect(i))) {
			q = i;
			break;
		}
	return q;
}
The slider area is divided into 3 parts, the upper blank area, the slider button, the bottom blank
area. We can divide it into 5(or seven), with addition to accomodate prev,next (and even prev2,
next2: anybody can ecudate me on what these two buttons are doing? I don't see it on the GUI at
all)

These kind of refinement do not add functionalities but still contribute to a better U++ experience.

Subject: Re: Know what you're using. Size of some common types.
Posted by Novo on Tue, 28 Dec 2021 22:49:48 GMT
View Forum Message <> Reply to Message

If one is allocating millions of inefficiently aligned structures, then he/she is wasting a lot of
memory.

BTW, there are tools which visualize amount of wasted memory caused by inefficient alignment of
data.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Wed, 29 Dec 2021 00:42:34 GMT
View Forum Message <> Reply to Message

Agreed. Here the waste on suboptimal alignment (or possible gain by rearrange member vars to
arrive at the least waste on padding) is insignificant comparing to the size of the object(of the
class).

I do believe we should pay some more attention to the order we declare struct/class member
variable to arrive at more efficient memory usage. I come across bitfields separated by other type
of variable once in a while. The ScrollBar class is an example of this.
private:
	int thumbpos;
	int thumbsize;

Page 4 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57933#msg_57933
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57933
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57934#msg_57934
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57934
https://www.ultimatepp.org/forums/index.php

	bool horz:1;
	bool jump:1;
	bool track:1;
	int delta;
	int8 push;
	int8 light;

	Button prev, prev2, next, next2;
	int pagepos;
	int pagesize;
	int totalsize;
	int linesize;
	int minthumb;
	bool autohide:1;
	bool autodisable:1;
	bool is_active:1;

But this are overall of a less degree of concern. The percentage saving is usual immaterial.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Thu, 30 Dec 2021 01:39:57 GMT
View Forum Message <> Reply to Message

I manage to create a ScrollBar twin (SkrollBar) that should look and act exactly the same (to be
safe, I leave untouched some old code that could benifit from rewritten with new facilities but I am
not very sure yet).

Class		Size
-------		-----
Button		224
SkrollBar	232
ScrollBar	1136
TabBarCtrl	1000
ArrayCtrl	3752
GridCtrl	4904

See above table. SkrollBar is now almost same size of Button. Above size of GridCtrl is after both
ScrollBar objects in it has been redefined as of type SkrollBar. Imagine howmany
GridCtrl/ArrayCtrl you will be using in your program :lol:

The code is still very rough. I dare not to touch the original Slider() portion's Paint & mouse event
(I wasn't able to understand it very well). I figure, push and light can be do without, linesize and
minthumbsize will be more than enough with an int8. I haven't tries (removing light and push will
require rewriting some code), chance is we can get SkollBar of the same size of Button.

Attached is a test that use ScrollBar/SkrollBar Vert()/Horz() side by side. They should look the

Page 5 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57940#msg_57940
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57940
https://www.ultimatepp.org/forums/index.php

same and behave the same. The Outer ones are SkrollBar. They respond to MouseMove in
debug mode to report the section number that the mouse is currently in.

With a vertical SkrollBar, section 0 is the prev button, section 2 is the prev2 button (mostly
invisble), section 3 is the portion of slider above the thumb, section 4 is the thumb, section 5 is the
portion of slider under the thumb, section 5 is the next2 button (mostly invisible), section 6 is the
next button.

File Attachments
1) SkrollBar.zip, downloaded 158 times

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 31 Dec 2021 18:51:15 GMT
View Forum Message <> Reply to Message

A more presentable state, see attached zip file. Now sizeof(ScrollBar)=sizeof(Button).

Please make a copy of your existing uppsrc/CtrlLib/ScrollBar.*, and and unpack the zip file to
overwrite existing ScrollBar.{h,cpp} in the uppsrc/CtrlLib folder. The revision is transparent to
library users. Your program should feel no difference, except some savings on executable size
and for each ScrollBar object you used, you will save around 900 bytes of memory.

File Attachments
1) ScrollBar.zip, downloaded 168 times

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 31 Dec 2021 19:20:48 GMT
View Forum Message <> Reply to Message

In the spirit of previous discussion with Novo, the following minor change to CtrlCore/CtrlCore.h
should decrease the sizeof(Ctrl) and that of all its derivative by 8 bytes on a 64-bit platform. While
on 32-bit system there is no gain(Ctrl has been perfectly fine tuned for 32-bit platform), and there
should be no penalties either.

Current code:
	Top *top;
	int exitcode;

	Ctrl *prev, *next;
	Ctrl *firstchild, *lastchild;//16
	LogPos pos;//8
	Rect16 rect;
	Mitor<Frame> frame;//16
	String info;//16
	int16 caretx, carety, caretcx, caretcy;//8

Page 6 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6555
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57944#msg_57944
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57944
https://www.ultimatepp.org/forums/index.php?t=getfile&id=6557
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57945#msg_57945
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57945
https://www.ultimatepp.org/forums/index.php

	byte overpaint;

Proposed change:
	Top *top;

	Ctrl *prev, *next;
	Ctrl *firstchild, *lastchild;//16
	LogPos pos;//8
	Rect16 rect;
	Mitor<Frame> frame;//16
	String info;//16
	int16 caretx, carety, caretcx, caretcy;//8

	int exitcode; // move the line here

	byte overpaint;

After the change, sizeof(Ctrl) is reduced from 152 bytes to 144 bytes on 64bit platform (both
MSBT22x64 and CLANG64), while on 32bit platform, it remains unchanged with CLANG, but
increases by 8 bytes with MSBT22. This increase is unexpected. If anybody can explain it or
figure out a way to avoid it, it will be fully appreciated.

@mirek or @klugier, please consider apply the change after identifying and fixing the unexpected
behavior with MSBT. The change is too simple to have potential danger and will affect all objects
of Ctrl and its derivatives.

PS: By making use of MSC 32 bit flag _M_IX86, the above problem could be circumvented as
follows:

...
	Top *top;
#if defined(_M_IX86) // 32bit MSC compiler
	int			exitcode;
#endif

	Ctrl *prev, *next;
	Ctrl *firstchild, *lastchild;//16
	LogPos pos;//8
	Rect16 rect;
	Mitor<Frame> frame;//16
	String info;//16
	int16 caretx, carety, caretcx, caretcy;//8

#if !defined(_M_IX86)
	int exitcode;
#endif

Page 7 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	byte overpaint;

	bool unicode:1;

	bool fullrefresh:1;

	bool transparent:1;
	bool visible:1;
	bool enabled:1;
	bool wantfocus:1;
	bool initfocus:1;
	bool activepopup:1;
	bool editable:1;
	bool modify:1;
	bool ignoremouse:1;
...

File Attachments
1) a.png, downloaded 529 times

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 31 Dec 2021 19:28:10 GMT
View Forum Message <> Reply to Message

And in the same spirit, move

protected:
	bool monoimg;
	byte type;

out of class Button, to its base class Pusher, ending with something like

class Pusher : public Ctrl {
public:
	virtual void CancelMode();
	virtual void LeftDown(Point, dword);
	virtual void MouseMove(Point, dword);
	virtual void MouseLeave();
	virtual void LeftRepeat(Point, dword);
	virtual void LeftUp(Point, dword);
	virtual void GotFocus();
	virtual void LostFocus();
	virtual void State(int);
	virtual String GetDesc() const;
	virtual bool Key(dword key, int);
	virtual bool HotKey(dword key);
	virtual dword GetAccessKeys() const;

Page 8 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6558
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57946#msg_57946
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57946
https://www.ultimatepp.org/forums/index.php

	virtual void AssignAccessKeys(dword used);

private:
	bool push:1;
	bool keypush:1;
	bool clickfocus:1;
protected:
	bool monoimg;
	byte type;

Should not harm Pusher but decrease sizeof(Button) and that of its derivatives by 8 bytes on
64-bit platform and 4 bytes on 32-bit platform.

The changes are too trivial to be of danger.

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Wed, 05 Jan 2022 09:47:55 GMT
View Forum Message <> Reply to Message

BTW, there are two benchmarking packages for this purpose already:

benchmarks/sizeof

bemchmarks/sizeof_gui

Anyway, this is definitely a good effort! Keeping sizeof(Ctrl) low is important.

Mirek

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 07 Jan 2022 16:25:51 GMT
View Forum Message <> Reply to Message

mirek:

Thanks. The output from above test program works better with Excel like utility so that record
keeping and comparison are easier.

While there will not be a fixed ratio between total Ctrl used and that of ScrollBar used, I have test
run some examples to get a feel of a rough ratio.

Examples/AddressBook(Up to the mainwindow is open): Max Ctrl Used: 96, Max ScrollBar used:
11 (9:1)

Page 9 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57961#msg_57961
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57961
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57974#msg_57974
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57974
https://www.ultimatepp.org/forums/index.php

Examples/HomeBudget(Up to the mainwindow is open): Max Ctrl Used: 277, Max ScrollBar used:
22 (13:1)

Reference/GridCtrlTest(Up to the maindown is open): Max Ctrl Used: 1011, Max ScrollBar used:
132 (8:1)

UppSrc/ide(open a blank CtrlLib application): Max Ctrl Used: 802, Max ScrollBar used: 217 (4:1);

Again ide, but this time open UppSrc/ide, and in it, click the very last file ide.lay: Max Ctrl Used:
22001, Max ScrollBar used: 2181 (10: 1)

Considering the absolute and percentage saving we derived from the new implementation of
ScrollBar (well, only an insignificant part of it to be more precise), accepting new ScrollBar would
be as beneficial as compacting Ctrl, if not more: mirek mentioned in another discussion that he
could replace a String with a const char *, resulting in additional saving of 8 bytes on 64 bit
platforms and 12 bytes on 32 bit ones. Combining with that derived from rearranging member
variables to minimize padding, we end up with 16 bytes each on both 32 and 64 bit platforms.
That's about it if we don't want to lose any functionalities.

ScrollBar is pretty isolated: I don't think many people will need to derive from it. As long as we
maintain the user interface stable/untouched, and test it on different platforms/settings, it should
pose very low risk of messing up things (to replace it). These are all gain at no cost: by the way,
new ScrollBar results in smaller executable too. Now my question is: Why not? :p

PS: Even if you derive from ScrollBar, I don't think you will be affected: the functions/member
variables changed are all private (as far as I can remember).

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 07 Jan 2022 16:44:17 GMT
View Forum Message <> Reply to Message

Assuming the proposed data reorganization for Ctrl and Pusher & Button are both applied,
sizeof(Button) will be reduced 16 bytes from 224 to 208 (on 64bit platforms). By ridding of the 4
contained Buttons, each ScrollBar object will be using 4x204=832 less bytes.

Use second case of uppsrc/ide on 64 bit platform for example, compacting Ctrl to save 8 bytes
each will have a total memory saving of 22001x8=176,008 bytes. The new ScrollBar
implementation will have an incremental memory saving of 2181x832=1,814,592 bytes.

I am not saying 2M or even 10M of memory saving will make much a difference in now-a-days
hardware, but reducing sizeof(ScrollBar) to 1/5 of what it is (actually even less) might not be less
important than reducing sizeof(Ctrl) by 8 - 24 bytes from practical persperctive.

Subject: Re: Know what you're using. Size of some common types.

Page 10 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57975#msg_57975
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57975
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Fri, 07 Jan 2022 17:32:00 GMT
View Forum Message <> Reply to Message

Well, I do not want to dive into this now - we need to release soon to stabilise huge changes done
and there is a lot of more important things to fix.

Anyway, after that, this is quite important and moreover fun.

The situation with ScrollBar buttons repeats itself in other places, e.g. with SpinButtons. I am
thinking there could be some nice generic solution, something like "Buttons" partly abstract class
that would represent "embedded buttons" using just virtual methods of derived class (similar
fashion to your ScrollBar implementation, but in generic way). EditIntWithSpin is quite big sizeof
as well and it is even more important (as it is has higher chance to be used in huge quantities).

But that all is pennies compared to DropList sizeof. That one needs converting 	PopUpTable list;
to One<PopUpTable> list; and only create when needed and then delete. Unfortunately, it is
delicate work, a lot of things there could go wrong.

Another things I would like to see reduced is String Ctrl::info. const char * would work there with
some effort. 8 bytes saved :) (Maybe add some flag that it points to Layout ID only, then it could
point to character literal in layout widget, even more savings).

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Fri, 07 Jan 2022 17:34:29 GMT
View Forum Message <> Reply to Message

Lance wrote on Fri, 07 January 2022 17:44Assuming the proposed data reorganization for Ctrl
and Pusher & Button are both applied, sizeof(Button) will be reduced 16 bytes from 224 to 208 (on
64bit platforms). By ridding of the 4 contained Buttons, each ScrollBar object will be using
4x204=832 less bytes.

Use second case of uppsrc/ide on 64 bit platform for example, compacting Ctrl to save 8 bytes
each will have a total memory saving of 22001x8=176,008 bytes. The new ScrollBar
implementation will have an incremental memory saving of 2181x832=1,814,592 bytes.

I am not saying 2M or even 10M of memory saving will make much a difference in now-a-days
hardware, but reducing sizeof(ScrollBar) to 1/5 of what it is (actually even less) might not be less
important than reducing sizeof(Ctrl) by 8 - 24 bytes from practical persperctive.

Frankly, I am not that concerned about saving memory in such normal situations.

However, I have seen/used ArrayCtrls with thousands of embedded DropLists. There it could be
huge....

Page 11 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57976#msg_57976
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57976
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57977#msg_57977
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57977
https://www.ultimatepp.org/forums/index.php

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 07 Jan 2022 18:01:25 GMT
View Forum Message <> Reply to Message

Thanks for the feedback, mirek. Please stay focused on important/urgent matters.

And come back to consider these more marginal issues when you have time & interests. :p

Thank you again for such a great product named Ultimate++. I wish it would stay around as long
as there are people using C++. I feel sad that such great work is not as popular as it deserves. I
tried (quite hard and persistently) to sell it to my teenage son and his friends but haven't been very
successful. More good projects that's written with UPP facilities need to be around to spread its
influence. E.g. pgAdminIII could benefit from a better/more responsive GUI. Our community
members should be able to come up with better candidates. Downstream demands will also help
to find directions of Core Upp development.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Fri, 07 Jan 2022 18:26:35 GMT
View Forum Message <> Reply to Message

I kind of understand what you intends to do, because I have also thought in that direction. I call it
FakeCtrl: Ctrl-like objects that rely on containing Ctrl's Paint(...), LeftDown(...) etc to mimic an
actual Ctrl. Problems is, if we want to generalize it, we will need to have almost all state (and
hence member variable) a Ctrl has: the saving won't be significant. While a generic solution is
hard to come up with, case by case is easy.

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Fri, 07 Jan 2022 21:22:00 GMT
View Forum Message <> Reply to Message

Lance wrote on Fri, 07 January 2022 19:26I kind of understand what you intends to do, because I
have also thought in that direction. I call it FakeCtrl: Ctrl-like objects that rely on containing Ctrl's
Paint(...), LeftDown(...) etc to mimic an actual Ctrl. Problems is, if we want to generalize it, we will
need to have almost all state (and hence member variable) a Ctrl has: the saving won't be
significant. While a generic solution is hard to come up with, case by case is easy.

Only for buttons. That is not that hard.

Mirek

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Sun, 09 Jan 2022 19:36:10 GMT
View Forum Message <> Reply to Message

Page 12 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57978#msg_57978
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57978
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57979#msg_57979
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57979
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57981#msg_57981
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57981
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57986#msg_57986
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57986
https://www.ultimatepp.org/forums/index.php

If the intended modified Button will continue to be a Ctrl derivative so that it works seamlessly with
existing code, the minimum size it will have is sizeof(Ctrl). In this particular situation, the Ctrl
member variable LogPos(and maybe more candidates) can be done without, we can reuse it to
put a Style * st; and probably WhenPush event variable somewhere else. In any case, the
minimum size will be sizeof(Ctrl). The savings won't be quite as good (significantly less than the
case when buttons or even frames are ridden of), even though it indeed involves least work and
least chance of surprise.

Another way is to define it something like

class FakeButton
{
public:
 void Paint(Draw& w, Rect& where, Button::Style& style, int
state/*normal,hot,pressed,disabled*/);

 Event<> WhenPush;
};

This way sizeof(FakeButton)==sizeof(Event<>)(==sizeof(void*)), but the effort involved in revising
containing Ctrl (ScrollBar, EditWithSpin, DropList, etc)'s Paint,LeftDown,LeftRepeat, etc, will be
quite similar to hardcoding each of the Ctrl's method that we need to change to allow the savings
to take place.

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Mon, 10 Jan 2022 00:07:26 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 09 January 2022 20:36If the intended modified Button will continue to be a
Ctrl derivative so that it works seamlessly with existing code, the minimum size it will have is
sizeof(Ctrl). In this particular situation, the Ctrl member variable LogPos(and maybe more
candidates) can be done without, we can reuse it to put a Style * st; and probably WhenPush
event variable somewhere else. In any case, the minimum size will be sizeof(Ctrl). The savings
won't be quite as good (significantly less than the case when buttons or even frames are ridden
of), even though it indeed involves least work and least chance of surprise.

Another way is to define it something like

class FakeButton
{
public:
 void Paint(Draw& w, Rect& where, Button::Style& style, int
state/*normal,hot,pressed,disabled*/);

Page 13 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57987#msg_57987
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57987
https://www.ultimatepp.org/forums/index.php

 Event<> WhenPush;
};

This way sizeof(FakeButton)==sizeof(Event<>)(==sizeof(void*)), but the effort involved in revising
containing Ctrl (ScrollBar, EditWithSpin, DropList, etc)'s Paint,LeftDown,LeftRepeat, etc, will be
quite similar to hardcoding each of the Ctrl's method that we need to change to allow the savings
to take place.

This would be too long. What we need is class Buttons like this:

class Buttons : Ctrl {
 virtual int GetButtonCount() = 0;
 virtual Rect GetButtonRectint i) = 0;
 virtual int ButtonMouseDown(Point p);
 virtual int ButtonMouseUp(Point p);
 virtual int ButtonMouseMove(Point p);
}

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Mon, 10 Jan 2022 01:00:13 GMT
View Forum Message <> Reply to Message

Great. For WithSpin<> which in turn contains SpinButtons, this can roughly reduce the object size
by 2*sizeof(Button) - sizeof(Ctrl). That's a great achievement with minimal impact on existing
code. It will just work.(Well, SpinButtons exposed Button inc, dec; but it should not be referenced
much except in the library implementation anyways).

And it's a generic solution. No matter how many buttons it fakes, it will take up room of only
sizeof(Ctrl).

For WithSpin in particular, another route I was considering (I am not versed with Upp enough to
know whether it will work) is to start from EditField. Basically add 2 bitfield bool

class EditField:....
{
....
public:
 void Paint(Draw& d)override{
 PaintSpinButtons();
 DoOriginalEditFieldPaintOnReducedSize();
 }

Page 14 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57988#msg_57988
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57988
https://www.ultimatepp.org/forums/index.php

 void LeftDown(Point p, dword f)override{
 if(p not in SpinPart)
 Parent::LeftDown(p,f);
 else if(p in UpperPart of Spin)
 WhenSpin(false);
 else// (p in LowerPart of Spin)
 WhenSpin(true);
 }
 void LeftRepeat(Point p, dword f)override{
 LeftDown(p,f);
 }
 Image CursorImage(Point p, dword)override{
 // Image according to part of the Ctrl
 }
 //... maybe more to be override'd or rewrite to take care of Fake SpinButton part.

 Event<bool> WhenSpin;
private:
 bool with_spin : 1;
 bool spin_visible : 1;

 Size GetReducedSize(){
 Size sz=GetSize();
 if(with_spin && spin_visible)
 reduce_size_to_leave_room_for_spin_buttons(sz);
 }
}

Then in actual types(EditIntWithSpin, EditInt64WithSpin, etc) that needs SpinButtons, we just turn
the flags on in respective constructors, and connect to WhenSpin event.

I am not sure if we claim part of EditField as Frame without actully AddFrame, etc, will work as
wished.

If you figure this route is worth considering, I can do a preliminary implementation. Otherwise (if
you prefer the more normal Buttons route), I will wait and see. :p

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Mon, 10 Jan 2022 20:43:41 GMT
View Forum Message <> Reply to Message

Buttons established a concept. If implemented with due care, it will arrive at same Ctrl size (eg,
ScrollBar, SpinButtons) as when hardcoded (like the way I do ScrollBar). That being said, Buttons
interface are not expected to save much work (than hard coded way), if any. Personally I will do
without: I don't see the benefit here, except the visual clue that they are doing similar things.

Page 15 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57991#msg_57991
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57991
https://www.ultimatepp.org/forums/index.php

I have performed a simple test on adding SpinButtons to EditField without resorting to a
CtrlFrame, and it works like a charm. I know this is not conceptually right, but it will work in
practice and save memory of a little over sizeof(Ctrl) for each EditWithSpin object than the
Buttons way mirek is considering. The only functionality it lose is when there are multiple frames,
you cannot choose to put the SpinButtons frame on anywhere except innermost, because it's not
a real CtrlFrame.

The Test is very simple, start a CtrlLib project with a Main Window with a EditField and a
EditInt64WithSpin. Now we start to play around with CtrlLib.

In <CtrlLib/EditCtrl.h, add a new virtual function to class EditField
class EditField : public Ctrl, private TextArrayOps {
public:
	virtual void Layout();
	virtual void Paint(Draw& draw);
	virtual void LeftDown(Point p, dword keyflags);
 ... omitted
	virtual void State(int);
	

 // newly introduced
	virtual Size GetReducedSize()const{
 // EditField::GetReducedSize() should just return GetSize();
 // it's the WithSpin derived class that should override this
 // function to reserve room for SpinButtons.
 //
 // here we reduce it as if allocating space for SpinButtons
 Size sz = GetSize();
 sz.cx -= 30;
 if(sz.cx < 0)
 sz.cx=0;
 return sz;
 }[/b]
...

In <CtrlLib/EditField.cpp>, search all occurence of "GetSize()", if it's not "GetSize().cy", and is not
"GetParent()->GetSize()", repace it with "GetReducedSize()". Run the test program, notice the
room for SpinButton has been allocated, and play with some input in the EditField, see it scroll
horizontally properly when the text gets really long. Now we can be certain this route is feasible.
And it will come out with more compact EditXXWithSpins than to retain Buttons in a CtrlFrame. I
would say the amount of coding involved are quite similar in both ways.

I will otherwise leave EditField (except probably add a spin_visible bitfield member intended for
EditXXwithSpin). Then override Paint, relevant mouse event virtual function in WithSpin<>
template class. It's quite similar to what I did with ScrollBar. No impact will be felt by libary users
except smaller EditXXWithSpin objects---class hierarchy and interfaces remain unchanged.

Page 16 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 11 Jan 2022 01:29:27 GMT
View Forum Message <> Reply to Message

WithSpin<> has method named OnSides() which allows the SpinButtons be splitted on both side
of the EditField. Not putting SpinButtons in a CtrlFrame will require a lot more work to modify
EditField::Paint() etc. Housing it in a CtrlFrame is cleaner and safer.

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Tue, 11 Jan 2022 12:41:17 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 10 January 2022 21:43That being said, Buttons interface are not expected
to save much work (than hard coded way), if any.

You wanna bet? :)

Mirek

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 11 Jan 2022 14:19:52 GMT
View Forum Message <> Reply to Message

I see. You will provide underlying facilities to support the Buttons interface so that by
implementing the interface, underlying CtrlLib or CtrlCore facilities will draw it correctly and deliver
mouse event etc as if each button is a actual Ctrl.

For WithSpin<>.OnSides, the painting can be taken care of by Draw.Offset. Not sure if there will
be more complications.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 11 Jan 2022 16:40:56 GMT
View Forum Message <> Reply to Message

This idea might worth further generalization:

For example, we have an ArrayCtrl who is housing thousands of child Ctrl: edits, buttons, etc.
Technicallu, each child don't need to worry about its location and size which will be set to

Page 17 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57992#msg_57992
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57992
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57993#msg_57993
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57993
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57994#msg_57994
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57994
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57995#msg_57995
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57995
https://www.ultimatepp.org/forums/index.php

whatever the ArrayCtrl decides. I am sure there will be a lot more states a resident child doesn't
need to worry about, similar to the Buttons case, but more generic: each child is determined by a
row and a column, unlike in Buttons case we only need an index to identify a fake Ctrl. As these
interface may be required by both ArrayCtrl and GridCtrl, ideally the support can be built into Ctrl
base class. And Edits, Button, etc need to provide a fake version (not derived from Ctrl, while the
real version ,like
what they are, is just fake controls contained in Ctrl which they also derive from.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 11 Jan 2022 21:07:07 GMT
View Forum Message <> Reply to Message

If ArrayCtrl limits children to Fake Ctrls only, SyncLineCtrls etc will be dispensible.

Back to Buttons, some chain of thoughts. Instead of inheriting from Ctrl, it should be leave as an
interface (no data members); concrete Ctrls will decide whether to inherit from Ctrl, ArrayCtrl,
EditField or other Ctrl derivatives and implementing the interface to use the Ctrl's Paint & other
virtual functions to fake out Buttons.

This will add a cost of sizeof(void *) (pointer to interface vtbl) to each object of Classes that
implement the interface. Why not add the interface (a set of virtual functions) to Ctrl directly to
save this vtble pointer?

class Ctrl : public ...
{
public:
 virtual void Paint(Draw& w)
 {
 for(int i = 0; i < GetFakeCtrlsCount(); ++i)
 {
 Rect r=GetFakeCtrlsRect(i);
 w.Clipoff(r);
 PaintFakeCtrls(w, i);
 w.End();
 }
 }
 virtual void LeftDown(Point p, dword flag)
 {
 for(int i = 0; i < GetFakeCtrlsCount(); ++i)
 {
 Rect r=GetFakeCtrlsRect(i);
 if(MouseInRect(r))
 {
 p.x -= r.left; p.y -= r.top;
 FakeCtrlsLeftDown(p, flag, i);
 break;
 }

Page 18 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57996#msg_57996
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57996
https://www.ultimatepp.org/forums/index.php

 }
 }
 ...
 // added to support fake Ctrls
 virtual int GetFakeCtrlsCount()const{ return 0; }
 virtual void PaintFakeCtrls(Draw& w, int index){}
 virtual void FakeCtrlsLeftDown(Point p, dword flag, int index){}
 ... and some more virtual function of Ctrl with an extra parameter index.
};

This way we don't explicitly limit the type of fake Ctrls (Not even by a non-restrictive but
suggestive name "Buttons"). It's totally up to each derivative that actually implements the interface
to decide what Ctrls it wants to fake.

PS: instead of repeatedly calling multiple virtual functions to Paint each fake Ctrl, it make sense to
instead

class Ctrl: ...
{
public:
 ...
 virtual void PaintFakeCtrls(Draw& w);
 ...

Then the PaintFakeCtrls() will be quite like ScollBar::Paint(). I don't know, let's see how you do it
clearly and efficiently.

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Tue, 11 Jan 2022 21:25:05 GMT
View Forum Message <> Reply to Message

The cost is the size of the vtable of Ctrl and each of its derivatives almost doubles. With the
number of classes in the hierarchy, this could be quite big to ignore. Then we get something like
suggested by you :lol:

class CtrlWithFakeCtrls : public Ctrl
{
...
}

Only Ctrls derived from the class are able to make use of the facility. If any existing Ctrl is believed
to be able to benefit from it, we just change its base class.

Now I get your point. It's nice.

Page 19 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=57997#msg_57997
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=57997
https://www.ultimatepp.org/forums/index.php

Subject: Re: Know what you're using. Size of some common types.
Posted by mirek on Wed, 11 May 2022 07:42:24 GMT
View Forum Message <> Reply to Message

So here I am after one month of optimizing:

Current U++:

* C:\upp\out\benchmarks\CLANGx64.Gui\sizeof_gui.exe 29.04.2022 17:35:45, user: cxl

sizeof(Image) = 8
sizeof(RichText) = 248
sizeof(Ctrl::LogPos) = 8
sizeof(LabelBase) = 136
=============
sizeof(Ctrl) = 152
sizeof(ScrollBar) = 1136
sizeof(HeaderCtrl) = 1456
sizeof(Button) = 224
sizeof(Switch) = 224
sizeof(Label) = 296
sizeof(EditField) = 440
sizeof(EditString) = 456
sizeof(EditInt) = 472
sizeof(SpinButtons) = 472
sizeof(EditIntSpin) = 952
sizeof(DisplayPopup) = 256
sizeof(PopUpTable) = 3824
sizeof(WithDropChoice<EditString>) = 4920
sizeof(DropList) = 4488
sizeof(ArrayCtrl) = 3784
sizeof(TreeCtrl) = 3656
sizeof(TreeCtrl::Node) = 80
sizeof(FileSel) = 26056
sizeof(RichTextView) = 1632
sizeof(ColumnList) = 1752
sizeof(RichEdit) = 69464

gui_sizeof branch:

* C:\upp\out\gui_sizeof_benchmarks\CLANGx64.Blitz.Gui\sizeof_gui.exe 11.05.2022 09:39:05,
user: cxl

sizeof(Image) = 8
sizeof(RichText) = 248

Page 20 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=58374#msg_58374
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58374
https://www.ultimatepp.org/forums/index.php

sizeof(Ctrl::LogPos) = 8
sizeof(LabelBase) = 64
=============
sizeof(Ctrl) = 104
sizeof(ScrollBar) = 192
sizeof(HeaderCtrl) = 464
sizeof(Button) = 176
sizeof(Switch) = 176
sizeof(Label) = 176
sizeof(EditField) = 320
sizeof(EditString) = 336
sizeof(EditInt) = 352
sizeof(SpinButtons) = 376
sizeof(EditIntSpin) = 384
sizeof(DisplayPopup) = 16
sizeof(PopUpTable) = 1552
sizeof(DropList) = 440
sizeof(WithDropChoice<EditString>) = 760
sizeof(ArrayCtrl) = 1512
sizeof(TreeCtrl) = 1288
sizeof(TreeCtrl::Node) = 80
sizeof(FileSel) = 8536
sizeof(RichTextView) = 640
sizeof(ColumnList) = 520
sizeof(RichEdit) = 22728

Subject: Re: Know what you're using. Size of some common types.
Posted by Novo on Thu, 12 May 2022 06:26:58 GMT
View Forum Message <> Reply to Message

FYI.
I've attached three tab-separated tables having a header below:
Type, Name, TypeIndex, Nested, Size, Padding, Padding/Size

This info is for TheIDE, Release, Windows. It is retrieved from debug info (this can be done in
Windows and Unix)

Sorted by Size:
struct	Upp::MemoryProfile	11203	0	278616	20	0.0000717834
struct	Upp::MemoryProfile	99836	0	278616	20	0.0000717834
struct	Ide	10	0	232488	108	0.0004645401
struct	Ide	43920	0	232488	108	0.0004645401
class	BuildMethods	71641	0	174176	0	0
class	BuildMethods	825	0	174176	0	0
struct	ZSTD_DCtx_s	118100	0	160312	18	0.0001122811
struct	ZSTD_DCtx_s	1331	0	160312	18	0.0001122811

Page 21 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=58375#msg_58375
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58375
https://www.ultimatepp.org/forums/index.php

struct	Upp::HeaderFooterDlg	5573	0	141680	0	0
class	Upp::PatchDiff	102483	0	135664	4	0.0000294846
class	Upp::PatchDiff	6438	0	135664	4	0.0000294846
class	Upp::PatchDiff	6440	0	135664	4	0.0000294846
class	Upp::PatchDiff	65233	0	135664	4	0.0000294846
class	Upp::GIFRaster::Data	123850	1	133624	14	0.0001047716
class	Upp::GIFRaster::Data	2175	1	133624	14	0.0001047716
class	Data	123927	1	133624	14	0.0001047716
class	Data	123927	1	133624	14	0.0001047716
class	Upp::GIFEncoder::Data	6934	1	131432	0	0
class	Data	124015	1	131432	0	0
class	Upp::GIFEncoder::Data	124084	1	131432	0	0
struct	Upp::sPalMaker	128970	0	131076	0	0
struct	Upp::sPalMaker	109	0	131076	0	0
struct	CLzmaEnc	1268	0	123272	8	0.0000648971
struct	CLzmaEnc	117784	0	123272	8	0.0000648971
struct	Pool	87626	1	114888	11	0.0000957454
struct	Pool	87626	1	114888	11	0.0000957454
struct	Upp::CoWork::Pool	11093	1	114888	11	0.0000957454
class	DefaultBuilderSetup	463	0	109368	0	0
class	Upp::StyleManager	5023	0	104200	4	0.0000383877
class	Upp::StyleManager	119901	0	104200	4	0.0000383877
class	TopicEditor	2965	0	85088	7	0.0000822678
class	TopicEditor	74943	0	85088	7	0.0000822678
class	Upp::DirDiffDlg	102374	0	81664	0	0
class	Upp::DirDiffDlg	548	0	81664	0	0
class	Upp::DirDiffDlg	45948	0	81664	0	0
class	Upp::DirDiffDlg	546	0	81664	0	0
struct	Upp::ParaFormatDlg	9045	0	80640	0	0
class	Upp::ParaFormatting	1638	0	79848	14	0.0001753331
class	Upp::ParaFormatting	119816	0	79848	14	0.0001753331
struct	QtfDlgEditor	6998	0	70416	0	0
struct	IdeQtfDes	2039	0	70096	0	0
struct	IdeQtfDes	103543	0	70096	0	0
class	Upp::RichEditWithToolBar	6608	0	70072	7	0.0000998972
class	Upp::RichEditWithToolBar	6606	0	70072	7	0.0000998972
struct	Upp::RichEditHdrFtr	11338	0	70064	0	0
class	Upp::RichEdit	7027	0	69464	41	0.0005902338
class	Upp::RichEdit	7025	0	69464	41	0.0005902338
class	Upp::RichEdit	7029	0	69464	41	0.0005902338
class	Upp::RichEdit	120597	0	69464	41	0.0005902338
class	Upp::RichEdit	68731	0	69464	41	0.0005902338
struct	Upp::WordDistanceTester	109746	0	67076	0	0
struct	Upp::WordDistanceTester	6526	0	67076	0	0
struct	DState	7923	0	64144	9	0.0001403093
struct	FormatDlg	10024	0	64136	0	0
struct	OutMode	2169	0	62928	0	0
struct	WithSetupFontLayout<Upp::ParentCtrl>	1817	0	58800	160	0.0027210884

Page 22 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

struct	EState	7925	0	55768	8	0.0001434514
class	Gdb	81257	0	51688	28	0.0005417118
class	Gdb	35	0	51688	28	0.0005417118
struct	Pdb	73	0	48864	42	0.0008595285
struct	Pdb	82340	0	48864	42	0.0008595285
struct	AssistEditor	2647	0	48184	29	0.0006018595

Sorted by Padding:
class	Upp::CodeEditor	92617	0	19104	3468	0.1815326633
class	Upp::CodeEditor	973	0	19104	3468	0.1815326633
class	Upp::CodeEditor	975	0	19104	3468	0.1815326633
class	Upp::CodeEditor	39471	0	19104	3468	0.1815326633
class	Upp::ImagePainter	8169	0	1128	1072	0.9503546099
struct	Upp::WithPaletteLayout<Upp::TopWindow>	8787	0	9648	344	0.035655058
struct	WithTemplateListLayout<Upp::TopWindow>	1602	0	4576	344	0.0751748252
struct	WithSimpleListLayout<Upp::TopWindow>	10165	0	4576	344	0.0751748252
struct	Upp::WithMacroManagerLayout<Upp::TopWindow>	3045	0	1704	344	0.2018779343
struct	WithUrepoConsoleLayout<Upp::TopWindow>	7591	0	4576	344	0.0751748252
struct	WithExportTrLayout<Upp::TopWindow>	4231	0	15768	344	0.0218163369
struct	Upp::WithPaletteSelectorLayout<Upp::TopWindow>	10028	0	944	344	0.3644067797
struct	WithInsertAsLayout<Upp::TopWindow>	8805	0	1312	344	0.262195122
struct	WithCustomLayout<Upp::TopWindow>	9241	0	5392	344	0.0637982196
struct	WithMoveTopicLayout<Upp::TopWindow>	3205	0	20552	344	0.0167380304
struct	WithSetupWebSearchEngineLayout<Upp::TopWindow>	6467	0	2592	344	0.1327160494
struct	Upp::WithImageSizeLayout<Upp::TopWindow>	11622	0	3288	344	0.104622871
struct	WithRenamePackageLayout<Upp::TopWindow>	7263	0	1840	344	0.1869565217
struct	WithConfLayout<Upp::TopWindow>	3688	0	5792	344	0.0593922652
struct	Upp::WithHexGotoLayout<Upp::TopWindow>	6162	0	6008	344	0.0572569907
struct	WithSaveTemplateLayout<Upp::TopWindow>	6802	0	15472	344	0.0222337125
struct	Upp::WithSimpleSelectLayout<Upp::TopWindow>	7940	0	4576	344	0.0751748252
struct	WithCredentialLayout<Upp::TopWindow>	2412	0	8040	344	0.0427860697
struct	Upp::WithImageLayout<Upp::TopWindow>	7100	0	5432	344	0.0633284242
struct	Upp::WithFileSelectorLayout<Upp::TopWindow>	10310	0	18168	344	0.0189343901
struct	WithNewPackageLayout<Upp::TopWindow>	9953	0	11152	344	0.0308464849
struct	Upp::WithEditIntLayout<Upp::TopWindow>	4129	0	1560	344	0.2205128205
struct	WithLangLayout<Upp::TopWindow>	9111	0	16384	344	0.0209960938
struct	WithBaseSetupLayout<Upp::TopWindow>	9523	0	4472	344	0.0769230769
struct	Upp::WithCellPropertiesLayout<Upp::TopWindow>	3301	0	16312	344	0.021088769
struct	WithGotoMemoryLayout<Upp::TopWindow>	10812	0	6776	344	0.0507674144
struct	WithQuickwatchLayout<Upp::TopWindow>	1587	0	9144	344	0.0376202975
struct	WithMatrixLayout<Upp::TopWindow>	9943	0	5784	344	0.0594744122
struct	WithAddLangLayout<Upp::TopWindow>	2193	0	9936	344	0.0346215781
struct	WithTppLayout<Upp::TopWindow>	11550	0	5624	344	0.0611664296
struct	WithFindInFilesLayout<Upp::TopWindow>	568	0	33064	344	0.0104040648
struct	WithCharsetLayout<Upp::TopWindow>	7572	0	5576	344	0.0616929699
struct	Upp::WithRescaleLayout<Upp::TopWindow>	1186	0	7048	344	0.0488081725
struct	Upp::WithUnitLayout<Upp::TopWindow>	8941	0	7784	344	0.0441932169
struct	WithPasskeyLayout<Upp::TopWindow>	2155	0	2304	344	0.1493055556

Page 23 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

struct	Upp::WithSplitCellLayout<Upp::TopWindow>	9882	0	3288	344	0.104622871
struct	WithMoveCopyPackageLayout<Upp::TopWindow>	5037	0	6984	344	0.049255441
struct	WithPrintLayout<Upp::TopWindow>	8193	0	2552	344	0.1347962382
struct	WithGetPasskeyLayout<Upp::TopWindow>	7321	0	1552	344	0.2216494845
struct	WithAutoSetupLayout<Upp::TopWindow>	4127	0	1768	344	0.1945701357
struct	Upp::WithRichFindReplaceLayout<Upp::TopWindow>	8541	0	11912	344	0.0288784419
struct	WithNestEditorLayout<Upp::TopWindow>	10780	0	5696	344	0.0603932584
struct	WithRunLayout<Upp::TopWindow>	6662	0	15368	344	0.0223841749
struct	WithLicenseLayout<Upp::TopWindow>	8869	0	3016	344	0.1140583554
struct	WithNewTopicLayout<Upp::TopWindow>	4786	0	15472	344	0.0222337125
struct	WithVisGenLayout<Upp::TopWindow>	6277	0	26104	344	0.013178057
struct	WithSelectPackageLayout<Upp::TopWindow>	10725	0	11288	344	0.0304748405
struct	WithAbbreviationsLayout<Upp::TopWindow>	6285	0	24648	344	0.0139565076
struct	Upp::WithObjectSizeLayout<Upp::TopWindow>	206	0	7240	344	0.0475138122
struct	Upp::WithFileSelectorLayout<Upp::TopWindow>	10308	0	18168	344	0.0189343901
struct	WithSetupGITLayout<Upp::TopWindow>	3425	0	3280	344	0.1048780488
struct	Upp::WithIDEFindReplaceLayout<Upp::TopWindow>	10873	0	14192	344	0.0242390079

Sorted by Padding/Size:
class	Upp::ImagePainter	8169	0	1128	1072	0.9503546099
struct	_DEBUG_EVENT	3331	0	176	160	0.9090909091
struct	COFF_IMAGE_SYMBOL	3051	0	26	16	0.6153846154
struct	COFF_IMAGE_SYMBOL	139682	0	26	16	0.6153846154
struct	jpeg_error_mgr	260	0	168	88	0.5238095238
class	Upp::CallbackN<int,bool &>	1397	0	16	8	0.5
class	Upp::CallbackN<int,int>	56432	0	16	8	0.5
class	Upp::CallbackN<Upp::Stream &>	9252	0	16	8	0.5
class	Upp::CallbackN<int,int>	5209	0	16	8	0.5
class	Upp::CallbackN<const int &>	119721	0	16	8	0.5
class	Upp::CallbackN<const Upp::String &,Upp::Vector<Upp::LineEdit::Highlight> &,const
Upp::WString &>	5426	0	16	8	0.5
class	Upp::CallbackN<bool,const Upp::String &,Upp::Image &>	75509	0	16	8	0.5
struct	ValueType	55349	1	16	8	0.5
class	Upp::CallbackN<const Upp::String &,Upp::Vector<Upp::LineEdit::Highlight> &,const
Upp::WString &>	66671	0	16	8	0.5
class	Upp::GateN<>	10086	0	16	8	0.5
class	Upp::GateN<int,int>	2708	0	16	8	0.5
class	Upp::GateN<Upp::CodeEditor::MouseTip &>	66796	0	16	8	0.5
class	Upp::CallbackN<Upp::Bar &>	1485	0	16	8	0.5
class	Upp::CallbackN<Upp::String &>	66756	0	16	8	0.5
class	Upp::CallbackN<Upp::String>	64253	0	16	8	0.5
struct	ValueType	55349	1	16	8	0.5
class	Upp::CallbackN<bool,const Upp::String &,Upp::Image &>	1154	0	16	8	0.5
class	Upp::CallbackN<Upp::Time &>	95128	0	16	8	0.5
class	Upp::CallbackN<Upp::String &,Upp::WString &>	8703	0	16	8	0.5
class	Upp::CallbackN<int,Upp::PasteClip &>	37998	0	16	8	0.5
class	Upp::GateN<Upp::CodeEditor::MouseTip &>	2995	0	16	8	0.5
struct	Upp::RichTxt::Part	55362	1	16	8	0.5

Page 24 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

struct	value_type	55350	1	16	8	0.5
class	Upp::GateN<>	113352	0	16	8	0.5
class	Upp::CallbackN<const Upp::String &,const Upp::String &>	99218	0	16	8	0.5
class	Upp::CallbackN<Upp::Point_<int> >	37972	0	16	8	0.5
class	Upp::CallbackN<long long>	10110	0	16	8	0.5
class	Upp::GateN<int,int>	94204	0	16	8	0.5
class	Upp::CallbackN<Upp::Bar &>	24631	0	16	8	0.5
class	Upp::CallbackN<int>	5035	0	16	8	0.5
class	Upp::CallbackN<long long>	66825	0	16	8	0.5
class	Upp::CallbackN<int,Upp::PasteClip &>	4225	0	16	8	0.5
class	Upp::CallbackN<int,const Upp::String &>	91852	0	16	8	0.5
class	Upp::CallbackN<int,const Upp::String &>	2099	0	16	8	0.5
struct	Upp::RichTxt::Part	2071	1	16	8	0.5
class	Upp::CallbackN<Upp::One<Upp::Ctrl> &>	26383	0	16	8	0.5
class	Upp::CallbackN<Upp::PasteClip &>	8017	0	16	8	0.5
struct	value_type	138946	1	16	8	0.5
class	Upp::CallbackN<Upp::EscEscape &>	250	0	16	8	0.5
class	Upp::CallbackN<Upp::Point_<int> >	1598	0	16	8	0.5
struct	Part	51523	1	16	8	0.5
class	Upp::CallbackN<const char *>	472	0	16	8	0.5
class	Upp::CallbackN<const char *>	58355	0	16	8	0.5
class	Upp::CallbackN<Upp::EscEscape &>	66862	0	16	8	0.5
class	Upp::CallbackN<int>	52370	0	16	8	0.5
class	Upp::GateN<long long,long long>	3299	0	16	8	0.5
class	Upp::GateN<long long,long long>	64649	0	16	8	0.5
class	Upp::CallbackN<const Upp::String &>	66709	0	16	8	0.5
class	Upp::CallbackN<const int &>	5404	0	16	8	0.5
class	Upp::CallbackN<Upp::Stream &>	31135	0	16	8	0.5
class	Upp::CallbackN<Upp::Time &>	6708	0	16	8	0.5
struct	value_type	55350	1	16	8	0.5
struct	asn1_type_st	478	0	16	8	0.5
class	Upp::CallbackN<Upp::String &>	10703	0	16	8	0.5
class	Upp::CallbackN<>	24613	0	16	8	0.5
class	Upp::CallbackN<Upp::One<Upp::EditorSyntax> &>	92123	0	16	8	0.5
struct	value_type	138946	1	16	8	0.5
class	Upp::CallbackN<>	7716	0	16	8	0.5
class	Upp::CallbackN<Upp::One<Upp::EditorSyntax> &>	11314	0	16	8	0.5
class	Upp::CallbackN<int,bool &>	61655	0	16	8	0.5
class	Upp::CallbackN<Upp::PasteClip &>	86672	0	16	8	0.5
class	Upp::CallbackN<const Upp::String &,const Upp::String &>	5211	0	16	8	0.5
class	Upp::CallbackN<const void *,int>	100988	0	16	8	0.5
struct	Part	51523	1	16	8	0.5
class	Upp::CallbackN<Upp::String>	3828	0	16	8	0.5
class	Upp::CallbackN<const Upp::String &>	11143	0	16	8	0.5
class	Upp::CallbackN<Upp::One<Upp::Ctrl> &>	2277	0	16	8	0.5
class	Upp::CallbackN<Upp::String &,Upp::WString &>	88967	0	16	8	0.5
class	Upp::CallbackN<const void *,int>	4958	0	16	8	0.5
struct	AppPreview::Line	2523	1	32	15	0.46875

Page 25 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

struct	Line	31709	1	32	15	0.46875
struct	ValueType	32269	1	32	15	0.46875
struct	AppPreview::Line	32282	1	32	15	0.46875
struct	ValueType	32269	1	32	15	0.46875
struct	value_type	32270	1	32	15	0.46875
struct	value_type	32270	1	32	15	0.46875
struct	Upp::Iml::IImage	17989	1	16	7	0.4375
struct	ValueType	18704	1	16	7	0.4375
struct	Upp::sThreadParam	5869	0	16	7	0.4375
struct	Upp::Iml::IImage	11268	1	16	7	0.4375
struct	ValueType	18589	1	16	7	0.4375
class	Upp::WaitCursor	5752	0	16	7	0.4375
struct	value_type	18705	1	16	7	0.4375
struct	Upp::H_l_	9555	0	16	7	0.4375
struct	value_type	17978	1	16	7	0.4375
class	Pdb::CopyMenu::<lambda24>	86333	0	16	7	0.4375
class	Pdb::CopyMenu::<lambda25>	86334	0	16	7	0.4375
struct	value_type	17978	1	16	7	0.4375
struct	Upp::TupleN<2,unsigned char,const char *>	606	0	16	7	0.4375
struct	Upp::TupleN<2,unsigned char,const char *>	109882	0	16	7	0.4375
struct	IImage	17819	1	16	7	0.4375
struct	ValueType	18704	1	16	7	0.4375
class	Pdb::CopyMenu::<lambda24>	86117	0	16	7	0.4375
struct	ValueType	18589	1	16	7	0.4375
struct	IImage	17819	1	16	7	0.4375
class	Upp::DirDiffDlg::DirDiffDlg::<lambda0>::operator()::<lambda1>	102429	0	16	7	0.4375
struct	value_type	18705	1	16	7	0.4375
class	Upp::DirDiffDlg::DirDiffDlg::<lambda0>::operator()::<lambda1>	102522	0	16	7	0.4375
class	Pdb::CopyMenu::<lambda25>	86125	0	16	7	0.4375

Subject: Re: Know what you're using. Size of some common types.
Posted by Lance on Sat, 14 May 2022 19:30:09 GMT
View Forum Message <> Reply to Message

Great job! Thank you, Mirek!

Page 26 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11716&goto=58381#msg_58381
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58381
https://www.ultimatepp.org/forums/index.php

