
Subject: Assist++ typedef struct analysis problem
Posted by Xemuth on Sat, 26 Mar 2022 23:49:19 GMT
View Forum Message <> Reply to Message

Hello U++,

I noticed that Assist++ fail to parse some struct. Lets take a look at thoses 4 structs def:

test.h:

#ifndef _test_assist_test_h_
#define _test_assist_test_h_

typedef struct StructToResolve {
 uint32_t engineVersion;
 uint32_t apiVersion;
} StructToResolve;

typedef struct StructToResolve2 {
 uint32_t engineVersion;
 uint32_t apiVersion;
};

//Illegal but we test Assist++ here !
struct StructToResolve3 {
 uint32_t engineVersion;
 uint32_t apiVersion;
} StructToResolve3;

struct StructToResolve4 {
 uint32_t engineVersion;
 uint32_t apiVersion;
} test;

#endif

All four struct are found by assist++. However, auto completion don't work on the first.
Moreover having a struct having a name at begining and variable declaration with the same name
are shown has two different struct by Assist++.

test.cpp

#include "test.h"
int main(int argc, const char *argv[])
{
	StructToResolve str;

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34388
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58216#msg_58216
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58216
https://www.ultimatepp.org/forums/index.php

	str. // Assist++ don't find anything. It don't even open
	
	StructToResolve2 str2;
	str2.engineVersion; // work fine
	
	
	StructToResolve3 str3;
	str3.apiVersion; // Work fine BUT doing a Ctrl+ Space during writting of this type result in 2
distinct StructToResolve3 type. See the screenshot
	
	StructToResolve4 str4;
	str4.engineVersion; // Work fine BUT ...
		
	return 0;
}

this bug is problematique when working with lib definition a huge amount of the structure which
have the same declaration as the first one.

Subject: Re: Assist++ typedef struct analysis problem
Posted by Lance on Sun, 27 Mar 2022 01:38:20 GMT
View Forum Message <> Reply to Message

I can see it happens when you have to use some imported C code (first typedef). So it is a bug
worth to be fixed.

second typedef is obviously illegal code.

I also noticed that following are valid C++ code

struct C{
};
C C;

I didn't know that before: I thought by declaring C as a class/struct name in C++, it kind of makes it
a para-keyword which forbids it be further used as identifier name.

And the following are also valid

struct C{};
struct D{};
C D;

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58217#msg_58217
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58217
https://www.ultimatepp.org/forums/index.php

Subject: Re: Assist++ typedef struct analysis problem
Posted by Lance on Sun, 27 Mar 2022 01:54:09 GMT
View Forum Message <> Reply to Message

BTW, xemuth's example code

 StructToResolve3 str3;

is not legal C/C++ code: it won't compile.

It should be

 struct StructToResolve3 str3;

And the following code compiles

struct C{
	void hi(){}
};

struct D{
	void hi(){};
};

int main()
{
	C D;
	struct D d; // the keyword struct cannot be done without
	D.hi();
	d.hi();
}

or this also compiles

struct C{
	void hi(){}
};

struct D{
	void hi(){};
};

int main()
{
	D d;
	C D;

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58218#msg_58218
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58218
https://www.ultimatepp.org/forums/index.php

	D.hi();
	d.hi();
}

Conclusion: in a context where a class/struct name is used as identifier(and hence hidden by it),
to refer to the class/struct, a leading classor struct keyword needs to be prepended.

Subject: Re: Assist++ typedef struct analysis problem
Posted by Lance on Sun, 27 Mar 2022 02:09:37 GMT
View Forum Message <> Reply to Message

BTW:

struct Empty{};

struct Z {
 char c;
 [[no_unique_address]] Empty e1, e2;
};

Above c++20 code will confuse assist++ too. I wasn't able to figure a way to fix it.

Subject: Re: Assist++ typedef struct analysis problem
Posted by Xemuth on Sun, 27 Mar 2022 02:20:01 GMT
View Forum Message <> Reply to Message

Hello Lance, yes somes of my struct here wont compile.

About this bug. I digged Parser code in order to find a simple way to ignore C struct alias but didn't
find a correct way to fix it.
However I have a temporary fix :

.\upp\uppsrc\CppBase\Parser.cpp : 1675

if(d.name.GetCount() && d.name != d.type) { // We want to prevent struct alias to be
missinterpreted

It's wacky :d

Maybe I will dig it more tomorrow to understand the root cause of it and find a better way to fix it.

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58219#msg_58219
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58219
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34388
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58220#msg_58220
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58220
https://www.ultimatepp.org/forums/index.php

Subject: Re: Assist++ typedef struct analysis problem
Posted by Lance on Wed, 30 Mar 2022 16:10:51 GMT
View Forum Message <> Reply to Message

That part of code is not very pleasant to touch 8) --from my experience to tell parser to ignore
[[identifier]].

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11783&goto=58224#msg_58224
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=58224
https://www.ultimatepp.org/forums/index.php

