
Subject: Refactoring Moveable
Posted by mirek on Fri, 23 Aug 2024 06:52:08 GMT
View Forum Message <> Reply to Message

In order to make U++ more compatible and future proof, I am changing Moveable mechanisms a
bit. U++ will now use C++17 inline template features to to simplify Moveable and allow putting
"non-U++ guest types" in Vector/BiVector/Index. On the way I hope to fix some other problems
(e.g. auto [a, b] = MakeTuple("x", 1) does not work yet) and remove all "dangerous" (ok, all
possibly undefined behaviour) code, except Moveable, which is de facto standard now anyway (
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p11 44r10.html).

Development is so far in the branch Core2024, critical part for your kind review:

 https://github.com/ultimatepp/ultimatepp/blob/3638778b2e0e18
19622424a70a7f04ef0950741d/uppsrc/Core/Topt.h#L158

This now works:

template <>
inline constexpr bool Upp::is_upp_guest<std::string> = true;

template<> inline hash_t Upp::GetHashValue(const std::string& a)
{
	return memhash(a.data(), a.length());
}

CONSOLE_APP_MAIN
{
	{
		Vector<std::string> h;
		for(int i = 0; i < 20; i++)
			h << AsString(i).ToStd();
		RDUMP(h);
		Vector<int> rem = { 1, 2, 3 };
		h.Remove(rem);
		RDUMP(h);
		h.RemoveIf([&](int i) { return h[i].back() == '8'; });
		RDUMP(h);
		Vector<std::string> n = { "21", "22", "23" };
		h.Insert(2, n);
		RDUMP(h);
		h.Insert(2, pick(n));
		RDUMP(h);
		h.Remove(2, 3);
		RDUMP(h);
	}

Page 1 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=60744#msg_60744
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60744
https://www.ultimatepp.org/forums/index.php

	{
		Index<std::string> x { "one", "two", "three" };
		RDUMP(x);
		RDUMP(x.Find("two"));
	}
}

(This works legally, using std::move instead of memmove/memcpy for std::string).

Subject: Re: Refactoring Moveable
Posted by Oblivion on Sun, 08 Sep 2024 11:18:37 GMT
View Forum Message <> Reply to Message

Hello Mirek,

Good to be on C++17

Hovewer, this seems to break a lot of things.

For example, If I derive something from MoveableAndDeepCopyOption<T>, which is now derived
from TriviallyRelocatable<T> (Say, T = Vector<T>, which was possible up until now) then I can't
access the methods or members of T.

Reason: TriviallyRelocatable<T> is defined as:

template <class T>
struct TriviallyRelocatable {};

Any ideas on how to proceed, or am I missing something?

Best regards,
Oblivion

Subject: Re: Refactoring Moveable
Posted by mirek on Sun, 08 Sep 2024 13:41:53 GMT
View Forum Message <> Reply to Message

Oblivion wrote on Sun, 08 September 2024 13:18Hello Mirek,

Good to be on C++17

Page 2 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=60775#msg_60775
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60775
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=60776#msg_60776
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60776
https://www.ultimatepp.org/forums/index.php

Hovewer, this seems to break a lot of things.

For example, If I derive something from MoveableAndDeepCopyOption<T>, which is now derived
from TriviallyRelocatable<T> (Say, T = Vector<T>, which was possible up until now) then I can't
access the methods or members of T.

Reason: TriviallyRelocatable<T> is defined as:

template <class T>
struct TriviallyRelocatable {};

Any ideas on how to proceed, or am I missing something?

Best regards,
Oblivion

Uhm, normal use is like

struct Foo : MoveableAndDeepCopyOption<Foo> {
...
};

- obviously, you can access methods of Foo in Foo...

Example of what you need?

Note: There is one small issue I was unable to solve. U++ had two parameter Moveable, where
second parameter was optional base class. It is supposed to help with MSC++ big with empty
base class optimisations. It does not seem possible to use template magic with that which would
go well MSC++ optimiser, putting Moveable first in the base class list seems to work fine wrt
MSC++ optimisation and it really was used very sparsely even in U++ code and I guess almost
never in client code.

Anyway

struct Foo : Moveable<Foo, FooBase> ...

now has to be rewritten as

Page 3 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

struct Foo : Moveable<Foo>, FooBase ...

Subject: Re: Refactoring Moveable
Posted by mirek on Sun, 08 Sep 2024 13:44:37 GMT
View Forum Message <> Reply to Message

Ah, and another issue, more positive change: PODs do not need Moveable anymore as all
std::is_trivial_copyable types are now trivially relocatable (aka Moveable)

Subject: Re: Refactoring Moveable
Posted by Novo on Thu, 02 Jan 2025 20:41:43 GMT
View Forum Message <> Reply to Message

A little bit of criticism.
Code below won't compile out of the box:
namespace test {
 struct Test;
}

namespace test {
 struct Test : Moveable<Test> {

 Vector<Test> children;
 };
}
Adding of
template <> inline constexpr bool is_upp_guest<test::Test> = true;

won't help.
You need to add
template <> inline constexpr bool is_trivially_relocatable<test::Test> = true;
All this stuff is inconvenient and unnatural.

And I have no idea how to make code below compile.
struct Test01;

struct Test01 {

 struct Test02 : Moveable<Test02> {

 Vector<Test02> children;
 };

Page 4 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=60777#msg_60777
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60777
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=61378#msg_61378
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61378
https://www.ultimatepp.org/forums/index.php

};

File Attachments
1) test_moveable.tar.gz, downloaded 37 times

Subject: Re: Refactoring Moveable
Posted by mirek on Fri, 03 Jan 2025 07:37:25 GMT
View Forum Message <> Reply to Message

Novo wrote on Thu, 02 January 2025 21:41A little bit of criticism.
Code below won't compile out of the box:
namespace test {
 struct Test;
}

namespace test {
 struct Test : Moveable<Test> {

 Vector<Test> children;
 };
}
Adding of
template <> inline constexpr bool is_upp_guest<test::Test> = true;

won't help.
You need to add
template <> inline constexpr bool is_trivially_relocatable<test::Test> = true;
All this stuff is inconvenient and unnatural.

And I have no idea how to make code below compile.
struct Test01;

struct Test01 {

 struct Test02 : Moveable<Test02> {

 Vector<Test02> children;
 };
};

Well, it is sort of obvious, right?

Anyway, easy fix is to move the static_assert to destructor. It however has the price of less clear
error and also only gets triggered when you instatiate Test02.

Page 5 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=7039
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=61380#msg_61380
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61380
https://www.ultimatepp.org/forums/index.php

Do we want to go there? Or any other ideas?

Subject: Re: Refactoring Moveable
Posted by Novo on Sat, 04 Jan 2025 05:46:31 GMT
View Forum Message <> Reply to Message

mirek wrote on Fri, 03 January 2025 02:37
Do we want to go there?

Something has to be done. IMHO, a situation when very simple code cannot be compiled is
unacceptable.
mirek wrote on Fri, 03 January 2025 02:37
Or any other ideas?

Please give me some time. I'll check with my old code where I was doing autodetection. Maybe I'll
find something interesting.

Subject: Re: Refactoring Moveable
Posted by mirek on Sat, 04 Jan 2025 08:05:19 GMT
View Forum Message <> Reply to Message

Moving static_assert here

template <class T>
inline typename std::enable_if_t<!is_trivially_relocatable<T>> Relocate(T *dst, T *src)
{
	static_assert(is_upp_guest<T>);
	new(dst) T(pick(*src));
	Destruct(src);
}

instead of destructor makes a lot of sense and perhaps adds a bit of self-explanation to the error,
but there is still that small disadvantage that it only gets displayed when building, not while editing.
Is that acceptable drawback?

Subject: Re: Refactoring Moveable
Posted by mirek on Sat, 04 Jan 2025 08:10:51 GMT
View Forum Message <> Reply to Message

OK, I have for now changed the code (experimentally), let me know if this is better.

Page 6 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=61383#msg_61383
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61383
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=61384#msg_61384
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61384
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12316&goto=61385#msg_61385
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61385
https://www.ultimatepp.org/forums/index.php

 https://github.com/ultimatepp/ultimatepp/commit/f6e62772853c
3de391879d70da8cbf11672eb74a

Page 7 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

