
Subject: 2024rc1
Posted by mirek on Sat, 28 Sep 2024 07:16:42 GMT
View Forum Message <> Reply to Message

2024 (rev. 17417) (Sep 2024)

https://sourceforge.net/projects/upp/files/upp/2024rc1/

Core

First release of U++ that requires C++17
Moveable concept redesigned with C++17 features. U++ now allows non-moveable types to be
stored in Vector flavor of containers (using Upp::is_upp_guest). PODs are automatically moveable
(aka trivially relocatable)
Upp::Tuple now supports structured binding
GetFileTime, GetFileLength, FileExists, DirectoryExists and FileMapping refactored
Stream::GetAll now invokes LoadError on negative count
ValueCache limits setting methods are simplified
Value now directly supports 'float' type
Some iffy code now made more C++ compliant (e.g. always using memcpy for unaligned data)
AsXML had new XML_ESCAPELF
Improved DarkTheme function

plugin/Zip

zip64 support

Draw

UHD image now can serve as source for SD image
New S3 .iml image flag - the images are drawn supersampled 3x, usually without antialiasing, and
only downsampled at runtime

Painter

Multithreaded rendering further optimised
New image filtering parameter - so far, rendering image was always with bilinear filtering, new
parameter allows other Image filter like Lanczos 3

CtrlCore

Horizontal mouse scroll wheel support
CtrlMapper now provides operator()(Ctrl, T, const T& factor) for simple unit conversions
gtk backend improvements, XWayland mouse cursor bug workaround

CtrlLib

CtrlMapper now provides operator()(Ctrl, T, const T& factor) for simple unit conversions

Page 1 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60869#msg_60869
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60869
https://www.ultimatepp.org/forums/index.php

ide

Icon Designer refactored and optimised, new tools added, S3 flag support added
Alt-M now goes to special scratchpad file of the same type as is current file, this is helpful e.g. for
temporary storing and editing parts of .iml images that are then composed to the final image.
Output directory in assembly definition now can be left empty and defaults to reasonable path.
Hexadecimal view is now much faster
Fixed further corner case Assist++ problems
Layout designer text field, used with e.g. Labels, now has Qtf button to edit text with RichEdit
Git file history now goes through renames
Compare with menu now suggests files in Download folder too
Main package configuration dialog improved

plugin upgrades

plugin/sqlite3: 3.46.0
plugin/lzma: 24.6
plugin/zstd: 1.5.6
Core: LZ4 1.9.4
plugin/z: 1.3.1
plugin/png: 1.6.46
plugin/tif: 4.6.0
plugin/jpeg: 9f

Win32

OpenSSL upgraded to3.2.1
Clang compiler upgraded to 18.1.5

Subject: Re: 2024rc1
Posted by Tom1 on Sat, 28 Sep 2024 16:36:50 GMT
View Forum Message <> Reply to Message

Mirek,

Thanks for your hard work!

Best regards,

Tom

Subject: Re: 2024rc1
Posted by JeyCi on Sat, 28 Sep 2024 17:21:46 GMT
View Forum Message <> Reply to Message

Page 2 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60871#msg_60871
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60871
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34528
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60872#msg_60872
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60872
https://www.ultimatepp.org/forums/index.php

what does "Win32" mean in the description ? does it mean that this version of UPP can be
installed in windows-10 32x ?

Subject: Re: 2024rc1
Posted by Didier on Sat, 28 Sep 2024 18:50:36 GMT
View Forum Message <> Reply to Message

Thanks Mirek,

Great work (especially for C++17) !!

Subject: Re: 2024rc1
Posted by Tom1 on Sat, 28 Sep 2024 20:55:40 GMT
View Forum Message <> Reply to Message

Hi Mirek,

It seems that Progress::SetPos() 'eats' memory.

#include <CtrlLib/CtrlLib.h>

using namespace Upp;

GUI_APP_MAIN
{
	for(int x=0;x<5;x++){
		Progress progress;
		progress.Create();
		progress.SetTotal(20000);
		for(int i=0;i<20000;i++){
			if(progress.Canceled()) break;
			progress.SetPos(i);
			progress.SetText(Format("MemoryUsedKb %d", MemoryUsedKb()));
		}
		Sleep(2000);
	}
}

Best regards,

Tom

Subject: Re: 2024rc1

Page 3 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60874#msg_60874
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60874
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60875#msg_60875
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60875
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Sun, 29 Sep 2024 18:51:43 GMT
View Forum Message <> Reply to Message

JeyCi wrote on Sat, 28 September 2024 19:21what does "Win32" mean in the description ? does
it mean that this version of UPP can be installed in windows-10 32x ?

E.g.

 https://stackoverflow.com/questions/61776207/where-does-win3
2-come-from-when-im-using-windows-64bit

Win32 is the name of API and while it was originally implemented for 32bit CPUs, it is used in 64
bit variant as well.

Funny part is that even library names, like kernel32.dll and user32.dll are still used for 64 bit
variants.

Subject: Re: 2024rc1
Posted by mirek on Sun, 29 Sep 2024 18:55:16 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Sat, 28 September 2024 22:55Hi Mirek,

It seems that Progress::SetPos() 'eats' memory.

#include <CtrlLib/CtrlLib.h>

using namespace Upp;

GUI_APP_MAIN
{
	for(int x=0;x<5;x++){
		Progress progress;
		progress.Create();
		progress.SetTotal(20000);
		for(int i=0;i<20000;i++){
			if(progress.Canceled()) break;
			progress.SetPos(i);
			progress.SetText(Format("MemoryUsedKb %d", MemoryUsedKb()));
		}
		Sleep(2000);
	}
}

Best regards,

Page 4 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60876#msg_60876
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60876
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60877#msg_60877
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60877
https://www.ultimatepp.org/forums/index.php

Tom

Teste with CLANG, CLANGx64 and MSBT 64, problem not reproduced. Perhaps needs more
instructions to reproduce?

Subject: Re: 2024rc1
Posted by Tom1 on Sun, 29 Sep 2024 20:02:16 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 29 September 2024 21:55
Teste with CLANG, CLANGx64 and MSBT 64, problem not reproduced. Perhaps needs more
instructions to reproduce?
Hi Mirek,

Do you mean that your MemoryUsedKb value did not keep climbing through all the five runs???

First, this is not a normal memory leak catched with debugger. This happens on Windows 11
Professional with all compilers: CLANG, CLANGx64, MSBT22, MSBT22x64. The MemoryUsedKb
starts out at around 1200 kB on first start, and then keeps gradually rising up to about 20000..
30000 kB when the fifth run is complete... and more if we let it run longer with higher values of x.

Best regards,

Tom

Subject: Re: 2024rc1
Posted by mirek on Sun, 29 Sep 2024 21:14:09 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Sun, 29 September 2024 22:02mirek wrote on Sun, 29 September 2024 21:55
Teste with CLANG, CLANGx64 and MSBT 64, problem not reproduced. Perhaps needs more
instructions to reproduce?
Hi Mirek,

Do you mean that your MemoryUsedKb value did not keep climbing through all the five runs???

First, this is not a normal memory leak catched with debugger. This happens on Windows 11
Professional with all compilers: CLANG, CLANGx64, MSBT22, MSBT22x64. The MemoryUsedKb
starts out at around 1200 kB on first start, and then keeps gradually rising up to about 20000..
30000 kB when the fifth run is complete... and more if we let it run longer with higher values of x.

Best regards,

Tom

Page 5 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60878#msg_60878
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60878
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60879#msg_60879
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60879
https://www.ultimatepp.org/forums/index.php

Reproduced: It is a problem of dark mode emulation. I was trying with normal mode first...

It is quite obvious - various variants of progress bar are drawn in normal mode, then converted to
DarkTheme and the result is cached.

You can adjust maximum size of cache with

GUI_APP_MAIN
{
	SetupValueCache(2000, 1);
	
	for(int x=0;x<5;x++){

and it stops increasing the memory.

So I do not think this is a problem nor a bug - it is just using general caching mechanism where it
is good to cache results for performance reasons.

Mirek

Subject: Re: 2024rc1
Posted by Lance on Sun, 29 Sep 2024 23:02:50 GMT
View Forum Message <> Reply to Message

Thank you Mirek for the great job!

Subject: Re: 2024rc1
Posted by mirek on Mon, 30 Sep 2024 10:01:50 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 29 September 2024 23:14Tom1 wrote on Sun, 29 September 2024
22:02mirek wrote on Sun, 29 September 2024 21:55
Teste with CLANG, CLANGx64 and MSBT 64, problem not reproduced. Perhaps needs more
instructions to reproduce?
Hi Mirek,

Do you mean that your MemoryUsedKb value did not keep climbing through all the five runs???

First, this is not a normal memory leak catched with debugger. This happens on Windows 11
Professional with all compilers: CLANG, CLANGx64, MSBT22, MSBT22x64. The MemoryUsedKb
starts out at around 1200 kB on first start, and then keeps gradually rising up to about 20000..

Page 6 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60880#msg_60880
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60880
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60884#msg_60884
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60884
https://www.ultimatepp.org/forums/index.php

30000 kB when the fifth run is complete... and more if we let it run longer with higher values of x.

Best regards,

Tom

Reproduced: It is a problem of dark mode emulation. I was trying with normal mode first...

It is quite obvious - various variants of progress bar are drawn in normal mode, then converted to
DarkTheme and the result is cached.

You can adjust maximum size of cache with

GUI_APP_MAIN
{
	SetupValueCache(2000, 1);
	
	for(int x=0;x<5;x++){

and it stops increasing the memory.

So I do not think this is a problem nor a bug - it is just using general caching mechanism where it
is good to cache results for performance reasons.

Mirek

Upon further reflectio I decided that caching progress causes is just trashing the cache, so
optimised that out (with the advantage that the result is now actually faster in Win32).

The only downside is that now I have to think whether to apply the similar treatment to scrollbar
thumbs... :) But probably not.

Mirek

Subject: Re: 2024rc1
Posted by Tom1 on Mon, 30 Sep 2024 10:06:42 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 30 September 2024 13:01
Upon further reflectio I decided that caching progress causes is just trashing the cache, so
optimised that out (with the advantage that the result is now actually faster in Win32).

The only downside is that now I have to think whether to apply the similar treatment to scrollbar

Page 7 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60886#msg_60886
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60886
https://www.ultimatepp.org/forums/index.php

thumbs... :) But probably not.

Mirek
Thanks Mirek,

Nice Progress! (Progress behaves very well now.)

Best regards,

Tom

Subject: Re: 2024rc1
Posted by Tom1 on Mon, 30 Sep 2024 13:37:48 GMT
View Forum Message <> Reply to Message

Hi,

I think the "TIMING XpPaint" can be dropped from the release log now.

BR, Tom

Subject: Re: 2024rc1
Posted by Lance on Sat, 12 Oct 2024 15:31:57 GMT
View Forum Message <> Reply to Message

C:\upp\upp.src\uppsrc\CtrlCore\Ctrl.cpp (443): error C2445: result type of conditional expression
is ambiguous: types 'Upp::String' and 'const char [5]' can be converted to multiple common types

String Name(const Ctrl *ctrl)
{
	return ctrl ? ctrl->Name() : "NULL";
}

MSBT has issue with above.

Subject: Re: 2024rc1
Posted by Lance on Sat, 12 Oct 2024 18:20:54 GMT
View Forum Message <> Reply to Message

Code Reformat Issue.

I have been having issues with it for a while. Today I spend a few hours to create a almost mininal

Page 8 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60889#msg_60889
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60889
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60939#msg_60939
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60939
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60940#msg_60940
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60940
https://www.ultimatepp.org/forums/index.php

example.

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S{
	void Set (Size& sz,
					 int x, int y, int z,
					 int x1, int y1, int z1
);

	const S& f(Rect& r, Rect& s)const;
	
	struct D
	{
		int s(int rc)const
		{
			return rc*2;
		}
		
		int e(int rc)const
		{
			return rc*1;
		}
		
		int w(int rc)const
		{
			return rc*3;
		}
		
		int t()const
		{
			return 4;
		}
		
		
		int g(int k)const
		{
			return k;
		}

		void alloc();
		
		void alloc(int a);
		
		int v1;
		int v2;
	};

Page 9 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	D col,row;
};

void S::D::alloc ()
{
}

static void func (int& x, int& y, int& x1, int& y1, int x2, int y2,
					int x3, int y3, int x4, int y4
)
{
}

const S& S::f(Rect& r, Rect& s)const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t !=0 && r.top<row.v1 ? row.v1 : r.top;
	
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;

	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
		row.v1+row.v2 : r.bottom;

	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
		col.v1+col.v2 : r.right;
	return *this;
}

Add the code as a separate cpp file in a CtrlLib application, with it current, press Ctrl+I to reformat
it. The file before reformat compiles fine, not the reformatted one.

Subject: Re: 2024rc1
Posted by Lance on Sun, 13 Oct 2024 04:10:46 GMT
View Forum Message <> Reply to Message

two more minor issues (or maybe non-issues).

1. In dark theme, the Topic++ editor is still in light mode. Would be nice if it can melt with

Page 10 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60945#msg_60945
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60945
https://www.ultimatepp.org/forums/index.php

environment.

2. An unorthodox act will crash theide very badly. Take for example, let's open any package that
uses package Draw, for example Examples/Color. Click package Draw at the upper-left part of
TheIDE to list files in Draw. In the lower-left part of TheIDE, click the first file, Draw.h. Ctrl+Shift+G
to bring out the "go to line... "dialog, enter 45. Let's add a help content for data, in a stupid way.

Right click the dark blue squre beside the line "int64 data;", choose "Insert into
topic://Draw/src/Drawing_en-us".

Oops, we just noticed that's the wrong file. We cut the line

int64 data;

from Drawing_en-us.tpp and paste it to the very end of Draw_en-us.tpp. Go back to Draw.h, line
45, right click the dark blue square again, select "copy code reference id".

 Switch back to Draw_en-us.tpp, with caret on the newly pasted line, Ctrl-M to bring out the "code
reference" dialog. Paste the code reference id we just copied, which should be "Upp::Font::data".
Click OK to close the dialog.

So far so good. Click Draw.h tab to bring it current. Oops, an "Invalid memory access!" occurs. If it
doesn't, move mouse to over the blue square beside line 45 to show a help content. It happened
to me twice, verified.

This error can be fixed in the following way. When restarting theide, you will be prompted to
disable Assist features, select "Yes", go to the tpp file, delete thr problematic help line. Then use
menu Setup/Settings, on Assist tab, check the first item "Assist libclang parser is enabled..." to
reenable Assit++.

Subject: Re: 2024rc1
Posted by mirek on Sun, 13 Oct 2024 05:52:16 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 13 October 2024 06:10two more minor issues (or maybe non-issues).

1. In dark theme, the Topic++ editor is still in light mode. Would be nice if it can melt with
environment.

Colors are user setting. I do not know whether user wants it or not. Normally, theide chooses the
scheme on the first run, but then user is allowed to change it any way he likes, so it would not be
very nice to change the scheme at that point.

Well, maybe we could solve that with having 2 user configurations, one for light one for dark? But
in the next release..

Page 11 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60946#msg_60946
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60946
https://www.ultimatepp.org/forums/index.php

Subject: Re: 2024rc1
Posted by Oblivion on Sun, 13 Oct 2024 07:53:32 GMT
View Forum Message <> Reply to Message

Hi Mirek,

I think this change should be reverted for the time being, as I tried to explain, it creates more
problem than it solves (leaves paths percentage encoded).

Best regards,
Oblivion

Subject: Re: 2024rc1
Posted by Lance on Sun, 13 Oct 2024 11:28:32 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 13 October 2024 01:52Lance wrote on Sun, 13 October 2024 06:10two more
minor issues (or maybe non-issues).

1. In dark theme, the Topic++ editor is still in light mode. Would be nice if it can melt with
environment.

Colors are user setting. I do not know whether user wants it or not. Normally, theide chooses the
scheme on the first run, but then user is allowed to change it any way he likes, so it would not be
very nice to change the scheme at that point.

Well, maybe we could solve that with having 2 user configurations, one for light one for dark? But
in the next release..

That brings me to another UI suggestion.

Here is how we need to make changes for theme switching, etc.

The one on IDE tab is convenient. 3 options should be well tuned and easy to change:
1. stick with light theme;
2. stick with dark theme;
3. use the theme setting from Host platform.

The one on "Syntax highlighting" tab is not as well-thought. I recommend to change it to the drop
choice similar to the one on "IDE" tab. At the moment we can have these entries
1. light theme (stick with light theme, what the "white theme" buttom will do currently);
2. dark theme (stick with dark theme, what the "Dark theme" button will do currently);
3. "Use host theme"(similar to what the similar one on "IDE" tab would do);
4. "Use default colors" (what the Restore default colors button would do).

Page 12 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60947#msg_60947
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60947
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60949#msg_60949
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60949
https://www.ultimatepp.org/forums/index.php

And a check box below or above the drop choice, saying
[] Apply this to IDE and topic++

And do what it promises.

Apply similar UI changes to IDE tabs. So that a user can make desired changes from one of the
locations without having to set 3 places for one intention.

BTW, "Use host platform" seems to be a reasonable default for me. If a user choose certain
theme for his windows system, chance is he would like the same for TheIDE.

BTW, I don't know how to setting colors for Topic++ up until now. I wouldn't notice I need to
change setting in 2 places to make TheIDE looks natural in DarkTheme had Ubuntu not provided
the convenient way to switch theme in its recent version.

Of course, these are non-emmergent UI refinement that can be done in later release after more
discussion. Anyone who agrees with my suggestion, please vote yes. :lol:

File Attachments
1) tmp.png, downloaded 217 times

Subject: Re: 2024rc1
Posted by mirek on Sun, 13 Oct 2024 11:55:05 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 13 October 2024 13:28
1. In dark theme, the Topic++ editor is still in light mode. Would be nice if it can melt with
environment.

Another pretty though nut to crack...

What will be the equivalent of choosing the text color in the dark mode?

Not that you are editing text for both modes. We handle, barely, translation of light theme colors to
dark theme colors, but is the user, while editing topic++, supposed to select light mode colors (as
is now) or dark mode colors that will look different in light mode?

Anyway, all in all, I am postponing this after the release...

Page 13 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6975
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60950#msg_60950
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60950
https://www.ultimatepp.org/forums/index.php

Subject: Re: 2024rc1
Posted by mirek on Sun, 13 Oct 2024 11:58:46 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 13 October 2024 13:28
The one on "Syntax highlighting" tab is not as well-thought. I recommend to change it to the drop
choice similar to the one on "IDE" tab. At the moment we can have these entries
1. light theme (stick with light theme, what the "white theme" buttom will do currently);
2. dark theme (stick with dark theme, what the "Dark theme" button will do currently);
3. "Use host theme"(similar to what the similar one on "IDE" tab would do);
4. "Use default colors" (what the Restore default colors button would do).

This goes into reasonable direction, however I think that the actual choice should be single option:

"User defined colors"

If active, colors are editable (and do not change when mode changes), if not, it is current default
colors for dark/light. Maybe current buttons can stay, although only active when colors are
editable...

Subject: Re: 2024rc1
Posted by Lance on Sun, 13 Oct 2024 12:20:28 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 13 October 2024 07:55Lance wrote on Sun, 13 October 2024 13:28
1. In dark theme, the Topic++ editor is still in light mode. Would be nice if it can melt with
environment.

Another pretty though nut to crack...

What will be the equivalent of choosing the text color in the dark mode?

Not that you are editing text for both modes. We handle, barely, translation of light theme colors to
dark theme colors, but is the user, while editing topic++, supposed to select light mode colors (as
is now) or dark mode colors that will look different in light mode?

Anyway, all in all, I am postponing this after the release...

I see. I just checked Libre Office. It doesn't respect DarkTheme for its content area. So maybe we
shall just accept what we have right now.

Unless u++ users can agree on limiting the color selection to the ones that are theme-defined --

Page 14 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60951#msg_60951
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60951
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60952#msg_60952
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60952
https://www.ultimatepp.org/forums/index.php

this is doable, but quite involving, and also possibly not what our guys want. Very low priority if it
ever will be considered.

Subject: Re: 2024rc1
Posted by Lance on Sun, 13 Oct 2024 12:23:33 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 13 October 2024 07:58Lance wrote on Sun, 13 October 2024 13:28
The one on "Syntax highlighting" tab is not as well-thought. I recommend to change it to the drop
choice similar to the one on "IDE" tab. At the moment we can have these entries
1. light theme (stick with light theme, what the "white theme" buttom will do currently);
2. dark theme (stick with dark theme, what the "Dark theme" button will do currently);
3. "Use host theme"(similar to what the similar one on "IDE" tab would do);
4. "Use default colors" (what the Restore default colors button would do).

This goes into reasonable direction, however I think that the actual choice should be single option:

"User defined colors"

If active, colors are editable (and do not change when mode changes), if not, it is current default
colors for dark/light. Maybe current buttons can stay, although only active when colors are
editable...

Sounds good!

Subject: Re: 2024rc1
Posted by mirek on Mon, 14 Oct 2024 13:36:23 GMT
View Forum Message <> Reply to Message

Oblivion wrote on Sun, 13 October 2024 09:53Hi Mirek,

I think this change should be reverted for the time being, as I tried to explain, it creates more
problem than it solves (leaves paths percentage encoded).

Best regards,
Oblivion

Hopefully fixed (added flag to UrlDecode).

Subject: Re: 2024rc1

Page 15 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60953#msg_60953
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60953
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60959#msg_60959
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60959
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Mon, 14 Oct 2024 14:13:55 GMT
View Forum Message <> Reply to Message

Lance wrote on Sat, 12 October 2024 20:20Code Reformat Issue.

I have been having issues with it for a while. Today I spend a few hours to create a almost mininal
example.

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S{
	void Set (Size& sz,
					 int x, int y, int z,
					 int x1, int y1, int z1
);

	const S& f(Rect& r, Rect& s)const;
	
	struct D
	{
		int s(int rc)const
		{
			return rc*2;
		}
		
		int e(int rc)const
		{
			return rc*1;
		}
		
		int w(int rc)const
		{
			return rc*3;
		}
		
		int t()const
		{
			return 4;
		}
		
		
		int g(int k)const
		{
			return k;
		}

		void alloc();
		

Page 16 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60961#msg_60961
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60961
https://www.ultimatepp.org/forums/index.php

		void alloc(int a);
		
		int v1;
		int v2;
	};
	D col,row;
};

void S::D::alloc ()
{
}

static void func (int& x, int& y, int& x1, int& y1, int x2, int y2,
					int x3, int y3, int x4, int y4
)
{
}

const S& S::f(Rect& r, Rect& s)const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t !=0 && r.top<row.v1 ? row.v1 : r.top;
	
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;

	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
		row.v1+row.v2 : r.bottom;

	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
		col.v1+col.v2 : r.right;
	return *this;
}

Add the code as a separate cpp file in a CtrlLib application, with it current, press Ctrl+I to reformat
it. The file before reformat compiles fine, not the reformatted one.

Works for me in windows and works in Ubuntu. Unfortunately, this feature is now using
clang-format that can be different per distro...

Page 17 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Would be nice to give me a hint which host platform is in use...

Also, if nothing helps, please post reformatted text as well.

Mirek

Subject: Re: 2024rc1
Posted by mirek on Mon, 14 Oct 2024 14:17:17 GMT
View Forum Message <> Reply to Message

Quote:
Oops, we just noticed that's the wrong file. We cut the line

int64 data;

from Drawing_en-us.tpp and paste it to the very end of Draw_en-us.tpp. Go back to Draw.h, line
45, right click the dark blue square again, select "copy code reference id".

 Switch back to Draw_en-us.tpp, with caret on the newly pasted line, Ctrl-M to bring out the "code
reference" dialog. Paste the code reference id we just copied, which should be "Upp::Font::data".
Click OK to close the dialog.

So far so good. Click Draw.h tab to bring it current. Oops, an "Invalid memory access!" occurs. If it
doesn't, move mouse to over the blue square beside line 45 to show a help content. It happened
to me twice, verified.

This error can be fixed in the following way. When restarting theide, you will be prompted to
disable Assist features, select "Yes", go to the tpp file, delete thr problematic help line. Then use
menu Setup/Settings, on Assist tab, check the first item "Assist libclang parser is enabled..." to
reenable Assit++.

Cannot reproduce.

Maybe if this could be done without using uppsrc sources and tpp, just in single package, maybe
you can prepare for me "crashing package"?

Alternative, can you run it in debugger? :)

Mirek

Subject: Re: 2024rc1
Posted by Lance on Mon, 14 Oct 2024 14:23:10 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 14 October 2024 10:13Lance wrote on Sat, 12 October 2024 20:20Code

Page 18 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60962#msg_60962
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60962
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60963#msg_60963
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60963
https://www.ultimatepp.org/forums/index.php

Reformat Issue.

I have been having issues with it for a while. Today I spend a few hours to create a almost mininal
example.

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S{
	void Set (Size& sz,
					 int x, int y, int z,
					 int x1, int y1, int z1
);

	const S& f(Rect& r, Rect& s)const;
	
	struct D
	{
		int s(int rc)const
		{
			return rc*2;
		}
		
		int e(int rc)const
		{
			return rc*1;
		}
		
		int w(int rc)const
		{
			return rc*3;
		}
		
		int t()const
		{
			return 4;
		}
		
		
		int g(int k)const
		{
			return k;
		}

		void alloc();
		
		void alloc(int a);
		

Page 19 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

		int v1;
		int v2;
	};
	D col,row;
};

void S::D::alloc ()
{
}

static void func (int& x, int& y, int& x1, int& y1, int x2, int y2,
					int x3, int y3, int x4, int y4
)
{
}

const S& S::f(Rect& r, Rect& s)const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t !=0 && r.top<row.v1 ? row.v1 : r.top;
	
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;

	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
		row.v1+row.v2 : r.bottom;

	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
		col.v1+col.v2 : r.right;
	return *this;
}

Add the code as a separate cpp file in a CtrlLib application, with it current, press Ctrl+I to reformat
it. The file before reformat compiles fine, not the reformatted one.

Works for me in windows and works in Ubuntu. Unfortunately, this feature is now using
clang-format that can be different per distro...

Would be nice to give me a hint which host platform is in use...

Page 20 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Also, if nothing helps, please post reformatted text as well.

Mirek

Operation System: Ubuntu 24.04.1 LTS
GNOME version: 46
Windowing System: Wayland
clang-format --version: Ubuntu clang-format version 18.1.3 (1ubuntu1)

Reformatted output

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S {
	void Set(Size& sz, int x, int y, int z, int x1, int y1, int z1);

	const S& f(Rect& r, Rect& s) const;

	struct D {
		int s(int rc) const { return rc * 2; }

		int e(int rc) const { return rc * 1; }

		int w(int rc) const { return rc * 3; }

		int t() const { return 4; }

		int g(int k) const { return k; }

		void alloc();

		void alloc(int a);

		int v1;
		int v2;
	};
	D col, row;
};

void S::D::alloc() {}

static void func(int& x, int& y, int& x1, int& y1, int x2, int y2, int x3, int y3, int x4,
 int y4)
{
}

const S& S::f(Rect& r, Rect& s) const

Page 21 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t != 0 && r.top < row.v1 ? row.v1 : r.top;
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;
	s.left = l != 0 && r.left < col.v1 ? col.v1 : r.left;
	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
	s.bottom =
		row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ? row.v1 + row.v2 : r.bottom;
	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
	s.right = n == 1 && r.right > col.v1 + col.v2 ? col.v1 + col.v2 : r.right;
}

Line 46 (?), Line 48 ending (;), LIne 50 (?), Line 51 ending (;) are highlighted by theide(libclang) to
indicate grammer errors.

Subject: Re: 2024rc1
Posted by mirek on Mon, 14 Oct 2024 14:42:39 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 14 October 2024 16:23mirek wrote on Mon, 14 October 2024 10:13Lance
wrote on Sat, 12 October 2024 20:20Code Reformat Issue.

I have been having issues with it for a while. Today I spend a few hours to create a almost mininal
example.

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S{
	void Set (Size& sz,
					 int x, int y, int z,
					 int x1, int y1, int z1
);

	const S& f(Rect& r, Rect& s)const;
	
	struct D
	{
		int s(int rc)const
		{
			return rc*2;

Page 22 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60965#msg_60965
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60965
https://www.ultimatepp.org/forums/index.php

		}
		
		int e(int rc)const
		{
			return rc*1;
		}
		
		int w(int rc)const
		{
			return rc*3;
		}
		
		int t()const
		{
			return 4;
		}
		
		
		int g(int k)const
		{
			return k;
		}

		void alloc();
		
		void alloc(int a);
		
		int v1;
		int v2;
	};
	D col,row;
};

void S::D::alloc ()
{
}

static void func (int& x, int& y, int& x1, int& y1, int x2, int y2,
					int x3, int y3, int x4, int y4
)
{
}

const S& S::f(Rect& r, Rect& s)const
{
	int t, l, row_section_bottom, n;

Page 23 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	r.top = row.g(r.top);
	s.top = t !=0 && r.top<row.v1 ? row.v1 : r.top;
	
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;

	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
		row.v1+row.v2 : r.bottom;

	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
		col.v1+col.v2 : r.right;
	return *this;
}

Add the code as a separate cpp file in a CtrlLib application, with it current, press Ctrl+I to reformat
it. The file before reformat compiles fine, not the reformatted one.

Works for me in windows and works in Ubuntu. Unfortunately, this feature is now using
clang-format that can be different per distro...

Would be nice to give me a hint which host platform is in use...

Also, if nothing helps, please post reformatted text as well.

Mirek

Operation System: Ubuntu 24.04.1 LTS
GNOME version: 46
Windowing System: Wayland
clang-format --version: Ubuntu clang-format version 18.1.3 (1ubuntu1)

Reformatted output

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S {
	void Set(Size& sz, int x, int y, int z, int x1, int y1, int z1);

	const S& f(Rect& r, Rect& s) const;

	struct D {
		int s(int rc) const { return rc * 2; }

Page 24 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

		int e(int rc) const { return rc * 1; }

		int w(int rc) const { return rc * 3; }

		int t() const { return 4; }

		int g(int k) const { return k; }

		void alloc();

		void alloc(int a);

		int v1;
		int v2;
	};
	D col, row;
};

void S::D::alloc() {}

static void func(int& x, int& y, int& x1, int& y1, int x2, int y2, int x3, int y3, int x4,
 int y4)
{
}

const S& S::f(Rect& r, Rect& s) const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t != 0 && r.top < row.v1 ? row.v1 : r.top;
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;
	s.left = l != 0 && r.left < col.v1 ? col.v1 : r.left;
	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
	s.bottom =
		row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ? row.v1 + row.v2 : r.bottom;
	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
	s.right = n == 1 && r.right > col.v1 + col.v2 ? col.v1 + col.v2 : r.right;
}

Line 46 (?), Line 48 ending (;), LIne 50 (?), Line 51 ending (;) are highlighted by theide(libclang) to
indicate grammer errors.

Page 25 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

It must be some specific clang format setting that I am unable to reproduce. Can you give me
some hints? E.g. screenshot of "format with options" window and/or .clang-format file? (It is listed
in that dialog).

Subject: Re: 2024rc1
Posted by Lance on Mon, 14 Oct 2024 15:09:20 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 14 October 2024 10:17
Cannot reproduce.

Maybe if this could be done without using uppsrc sources and tpp, just in single package, maybe
you can prepare for me "crashing package"?

Alternative, can you run it in debugger? :)

Mirek

I wasn't able to reproduce it in a new, small project. I tried to abuse logs branch to create a n
instance but couldn't.

Could you try to unzip the 3 tpp files that's changed and replace their namesakes in
uppsrc/Draw/src.tpp folder?

Then somehow go to Draw/Draw.h, line 45, try to display a topic++ help window for "int64 data".

Thanks!

File Attachments
1) tpps.zip, downloaded 58 times

Subject: Re: 2024rc1
Posted by Lance on Mon, 14 Oct 2024 15:21:39 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 14 October 2024 10:42
It must be some specific clang format setting that I am unable to reproduce. Can you give me
some hints? E.g. screenshot of "format with options" window and/or .clang-format file? (It is listed
in that dialog).

.clang-format file, current: /home/lance/upp.src/.clang-format

.clang-format file for U++ framework

Page 26 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60966#msg_60966
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60966
https://www.ultimatepp.org/forums/index.php?t=getfile&id=6976
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60967#msg_60967
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60967
https://www.ultimatepp.org/forums/index.php

BasedOnStyle: LLVM
UseTab: AlignWithSpaces
IndentWidth: 4
TabWidth: 4
ColumnLimit: 96

Language: Cpp
AccessModifierOffset: -4
AllowShortFunctionsOnASingleLine: All
AlwaysBreakTemplateDeclarations: true
BreakBeforeBraces: Stroustrup
BreakConstructorInitializers: BeforeComma
CompactNamespaces: true
DerivePointerAlignment: false
IfMacros: ['ONCELOCK']
PointerAlignment: Left
SpaceBeforeParens: Custom
SpaceBeforeParensOptions:
 AfterControlStatements: false
IndentAccessModifiers: false
IndentPPDirectives: None

Everything is just as shipped with u++ distribution. I didn't touch any settings.

Subject: Re: 2024rc1
Posted by mirek on Tue, 15 Oct 2024 05:40:21 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 14 October 2024 17:09mirek wrote on Mon, 14 October 2024 10:17
Cannot reproduce.

Maybe if this could be done without using uppsrc sources and tpp, just in single package, maybe
you can prepare for me "crashing package"?

Alternative, can you run it in debugger? :)

Mirek

I wasn't able to reproduce it in a new, small project. I tried to abuse logs branch to create a n
instance but couldn't.

Could you try to unzip the 3 tpp files that's changed and replace their namesakes in
uppsrc/Draw/src.tpp folder?

Then somehow go to Draw/Draw.h, line 45, try to display a topic++ help window for "int64 data".

Page 27 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60969#msg_60969
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60969
https://www.ultimatepp.org/forums/index.php

Thanks!

IDK, there is just 1 .tpp file in .zip (Draw_en-us.tpp) and it seems to be unchanged from the
master...

Subject: Re: 2024rc1
Posted by mirek on Tue, 15 Oct 2024 11:31:33 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 14 October 2024 16:23mirek wrote on Mon, 14 October 2024 10:13Lance
wrote on Sat, 12 October 2024 20:20Code Reformat Issue.

I have been having issues with it for a while. Today I spend a few hours to create a almost mininal
example.

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S{
	void Set (Size& sz,
					 int x, int y, int z,
					 int x1, int y1, int z1
);

	const S& f(Rect& r, Rect& s)const;
	
	struct D
	{
		int s(int rc)const
		{
			return rc*2;
		}
		
		int e(int rc)const
		{
			return rc*1;
		}
		
		int w(int rc)const
		{
			return rc*3;
		}
		
		int t()const
		{

Page 28 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60971#msg_60971
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60971
https://www.ultimatepp.org/forums/index.php

			return 4;
		}
		
		
		int g(int k)const
		{
			return k;
		}

		void alloc();
		
		void alloc(int a);
		
		int v1;
		int v2;
	};
	D col,row;
};

void S::D::alloc ()
{
}

static void func (int& x, int& y, int& x1, int& y1, int x2, int y2,
					int x3, int y3, int x4, int y4
)
{
}

const S& S::f(Rect& r, Rect& s)const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t !=0 && r.top<row.v1 ? row.v1 : r.top;
	
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;

	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
		row.v1+row.v2 : r.bottom;

	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
		col.v1+col.v2 : r.right;
	return *this;

Page 29 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

}

Add the code as a separate cpp file in a CtrlLib application, with it current, press Ctrl+I to reformat
it. The file before reformat compiles fine, not the reformatted one.

Works for me in windows and works in Ubuntu. Unfortunately, this feature is now using
clang-format that can be different per distro...

Would be nice to give me a hint which host platform is in use...

Also, if nothing helps, please post reformatted text as well.

Mirek

Operation System: Ubuntu 24.04.1 LTS
GNOME version: 46
Windowing System: Wayland
clang-format --version: Ubuntu clang-format version 18.1.3 (1ubuntu1)

Reformatted output

#include <CtrlLib/CtrlLib.h>
using namespace Upp;

class S {
	void Set(Size& sz, int x, int y, int z, int x1, int y1, int z1);

	const S& f(Rect& r, Rect& s) const;

	struct D {
		int s(int rc) const { return rc * 2; }

		int e(int rc) const { return rc * 1; }

		int w(int rc) const { return rc * 3; }

		int t() const { return 4; }

		int g(int k) const { return k; }

		void alloc();

		void alloc(int a);

		int v1;

Page 30 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

		int v2;
	};
	D col, row;
};

void S::D::alloc() {}

static void func(int& x, int& y, int& x1, int& y1, int x2, int y2, int x3, int y3, int x4,
 int y4)
{
}

const S& S::f(Rect& r, Rect& s) const
{
	int t, l, row_section_bottom, n;
	r.top = row.g(r.top);
	s.top = t != 0 && r.top < row.v1 ? row.v1 : r.top;
	r.left = col.g(r.left);
	s.left = l != 0 && r.left< col.v1 ? col.v1 : r.left;
	s.left = l != 0 && r.left < col.v1 ? col.v1 : r.left;
	r.bottom = row.g(r.bottom);
	s.bottom = row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ?
	s.bottom =
		row_section_bottom == 1 && r.bottom > row.v1 + row.v2 ? row.v1 + row.v2 : r.bottom;
	r.right = col.g(r.right);
	s.right = n == 1 && r.right> col.v1 + col.v2 ?
	s.right = n == 1 && r.right > col.v1 + col.v2 ? col.v1 + col.v2 : r.right;
}

Line 46 (?), Line 48 ending (;), LIne 50 (?), Line 51 ending (;) are highlighted by theide(libclang) to
indicate grammer errors.

OK, after a bit of thinking I have added some more code to logs branch

 https://github.com/ultimatepp/ultimatepp/commit/04c14131cc46 99800ca6fa74421858c26cf3eb43

Can you reproduce the problem and send me those files?

Mirek

Subject: Re: 2024rc1
Posted by Lance on Tue, 15 Oct 2024 13:18:26 GMT
View Forum Message <> Reply to Message

Page 31 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60972#msg_60972
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60972
https://www.ultimatepp.org/forums/index.php

mirek wrote on Tue, 15 October 2024 01:40
IDK, there is just 1 .tpp file in .zip (Draw_en-us.tpp) and it seems to be unchanged from the
master...

Sorry my bad. Please try this one instead.

File Attachments
1) tpps.zip, downloaded 95 times

Subject: Re: 2024rc1
Posted by Lance on Tue, 15 Oct 2024 22:11:58 GMT
View Forum Message <> Reply to Message

mirek wrote on Tue, 15 October 2024 07:31
OK, after a bit of thinking I have added some more code to logs branch

 https://github.com/ultimatepp/ultimatepp/commit/04c14131cc46
99800ca6fa74421858c26cf3eb43

Can you reproduce the problem and send me those files?

Mirek

Hello Mirek,

Please see attached.

It appears the one written out is different from what's displaying in theide.

File Attachments
1) reformat.zip, downloaded 93 times

Subject: Re: 2024rc1
Posted by mirek on Wed, 16 Oct 2024 09:30:54 GMT
View Forum Message <> Reply to Message

Lance wrote on Wed, 16 October 2024 00:11mirek wrote on Tue, 15 October 2024 07:31
OK, after a bit of thinking I have added some more code to logs branch

 https://github.com/ultimatepp/ultimatepp/commit/04c14131cc46
99800ca6fa74421858c26cf3eb43

Can you reproduce the problem and send me those files?

Mirek

Page 32 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6980
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60975#msg_60975
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60975
https://www.ultimatepp.org/forums/index.php?t=getfile&id=6981
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60978#msg_60978
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60978
https://www.ultimatepp.org/forums/index.php

Hello Mirek,

Please see attached.

It appears the one written out is different from what's displaying in theide.

Perfect. I believe it is now fixed in the master, please check.

Mirek

Subject: Re: 2024rc1
Posted by Lance on Wed, 16 Oct 2024 13:18:47 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 16 October 2024 05:30
Perfect. I believe it is now fixed in the master, please check.

Mirek

Yes, it is.

Subject: Re: 2024rc1
Posted by mirek on Thu, 17 Oct 2024 08:47:14 GMT
View Forum Message <> Reply to Message

Lance wrote on Tue, 15 October 2024 15:18mirek wrote on Tue, 15 October 2024 01:40
IDK, there is just 1 .tpp file in .zip (Draw_en-us.tpp) and it seems to be unchanged from the
master...

Sorry my bad. Please try this one instead.

Reproduced and hopefully fixed in the master... Please confirm.

(Codereference at the very last paragraph of tpp text was the key ingredient I did not reproduce
properly based on original bug report.)

Mirek

P.S.: Thanks for your patience, hugely appreciated...

Subject: Re: 2024rc1
Posted by Lance on Thu, 17 Oct 2024 19:01:35 GMT

Page 33 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60980#msg_60980
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60980
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=60989#msg_60989
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=60989
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

mirek wrote on Thu, 17 October 2024 04:47
Reproduced and hopefully fixed in the master... Please confirm.

Yes, it works perfectly now!

Quote:
P.S.: Thanks for your patience, hugely appreciated...
It's my pleasure. Thank you for all the efforts!

BTW, now the master branch also need the DEBUGCODE flag to compile (in release mode)
because of code like these

void CodeEditor::Paint(Draw& w)
{
	DLOG(Format("====at %` ==========", GetSysTime()));
		DDUMP(GetScreenView());
		DDUMP(GetScreenRect());

Subject: Re: 2024rc1
Posted by Lance on Mon, 21 Oct 2024 00:11:04 GMT
View Forum Message <> Reply to Message

Lance wrote on Thu, 17 October 2024 15:01
BTW, now the master branch also need the DEBUGCODE flag to compile (in release mode)
because of code like these

void CodeEditor::Paint(Draw& w)
{
	DLOG(Format("====at %` ==========", GetSysTime()));
		DDUMP(GetScreenView());
		DDUMP(GetScreenRect());

That's a misinformation. My local copy got screwed up. I have recreated it. That may mean the
subseqent freeze reports might be faulty. I have recompiled logs/ide, and started testing. Sorry for
possibly unnecessary frustrations it might have caused.

BTW, I have encounter this code in CtrlLib/EditField.cpp line 151

int EditField::GetTextCx(const wchar *txt, int n, bool password, Font fnt) const
{
	if(password)
		return n * font['*'];
	const wchar *s = txt;

Page 34 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61005#msg_61005
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61005
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61030#msg_61030
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61030
https://www.ultimatepp.org/forums/index.php

	int x = 0;
	while(n--)
		x += GetCharWidth(*s++);
	return x;
}

Is the passed in parameter fnt supposed to be there? Was this function originally intended to be
static and using passed in Font to do calculation istead?

Subject: Re: 2024rc1
Posted by Lance on Mon, 21 Oct 2024 00:27:41 GMT
View Forum Message <> Reply to Message

with the u++ moving to c++17,

code like this (Core/Vcont.h line 13)

	void Malloc(size_t size) {
		if(std::is_trivially_destructible<T>::value)
			ptr = (T *)MemoryAlloc(size * sizeof(T));
		else {
			void *p = MemoryAlloc(size * sizeof(T) + 16);
			*(size_t *)p = size;
			ptr = (T *)((byte *)p + 16);
		}
	}

can benefit from constexpr-if compile time trimming to produce more compact and faster binary
(theoretically). I was wondering if u++ is open to such minor, insignificant improvements.

I just happen to encounter these lines :lol:

Subject: Re: 2024rc1
Posted by mirek on Mon, 21 Oct 2024 07:05:24 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 21 October 2024 02:27with the u++ moving to c++17,

code like this (Core/Vcont.h line 13)

	void Malloc(size_t size) {
		if(std::is_trivially_destructible<T>::value)
			ptr = (T *)MemoryAlloc(size * sizeof(T));
		else {

Page 35 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61032#msg_61032
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61032
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61033#msg_61033
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61033
https://www.ultimatepp.org/forums/index.php

			void *p = MemoryAlloc(size * sizeof(T) + 16);
			*(size_t *)p = size;
			ptr = (T *)((byte *)p + 16);
		}
	}

can benefit from constexpr-if compile time trimming to produce more compact and faster binary
(theoretically).

How? I have noticed that some people tend to constexpr to everything, but I fail to see a reason. If
that is supposed to perform the test only in compile time, then 30 years old compiler will do that
anyway. But I might be missing something perhaps?

Subject: Re: 2024rc1
Posted by Lance on Mon, 21 Oct 2024 10:55:22 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 21 October 2024 03:05
How? I have noticed that some people tend to constexpr to everything, but I fail to see a reason. If
that is supposed to perform the test only in compile time, then 30 years old compiler will do that
anyway. But I might be missing something perhaps?

On a second thought, you are right. A reasonably good compiler would perform the optimization
anyways. I remeber a couple years ago when I dig into u++ memory allocation utilities, I saw this
one

template <class T>
void memcpy_t(void *t, const T *s, size_t count)
{
	if((sizeof(T) & 15) == 0)
		memcpy128(t, s, count * (sizeof(T) >> 4));
	else
	if((sizeof(T) & 7) == 0)
		memcpy64(t, s, count * (sizeof(T) >> 3));
	else
	if((sizeof(T) & 3) == 0)
		memcpy32(t, s, count * (sizeof(T) >> 2));
	else
	if((sizeof(T) & 1) == 0)
		memcpy16(t, s, count * (sizeof(T) >> 1));
	else
		memcpy8(t, s, count * sizeof(T));
}

Page 36 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61034#msg_61034
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61034
https://www.ultimatepp.org/forums/index.php

Now I know you already counted on the compile time optimization.

Then the question becomes: what constexpr-if has to offer? Maybe speak a programmer's
intention more explicitly and thus possible compiler check, like override?

Subject: Re: 2024rc1
Posted by Lance on Mon, 21 Oct 2024 11:01:10 GMT
View Forum Message <> Reply to Message

I take back the hint about code size and efficiency difference. But personally I would use if
constexpr () in this and similar cases.

Quote:
For optimization purposes, modern compilers will generally treat non-constexpr if-statements that
have constexpr conditionals as if they were constexpr-if-statements. However, they are not
required to do so.

A compiler that encounters a non-constexpr if-statement with a constexpr conditional may issue a
warning advising you to use if constexpr instead. This will ensure that compile-time evaluation will
occur (even if optimizations are disabled).

Subject: Re: 2024rc1
Posted by mirek on Mon, 21 Oct 2024 11:21:50 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 21 October 2024 13:01I take back the hint about code size and efficiency
difference. But personally I would use if constexpr () in this and similar cases.

Quote:
For optimization purposes, modern compilers will generally treat non-constexpr if-statements that
have constexpr conditionals as if they were constexpr-if-statements. However, they are not
required to do so.

A compiler that encounters a non-constexpr if-statement with a constexpr conditional may issue a
warning advising you to use if constexpr instead. This will ensure that compile-time evaluation will
occur (even if optimizations are disabled).

IDK. I am afraid of another mass purge of all U++ sources adding constexpr everywhere for no
good reason... Not in this release to be sure.

Page 37 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61035#msg_61035
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61035
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61038#msg_61038
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61038
https://www.ultimatepp.org/forums/index.php

Subject: Re: 2024rc1
Posted by mirek on Mon, 21 Oct 2024 12:45:52 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 21 October 2024 13:01

A compiler that encounters a non-constexpr if-statement with a constexpr conditional may issue a
warning advising you to use if constexpr instead. This will ensure that compile-time evaluation will
occur (even if optimizations are disabled).

Well, thinking about it, I guess actually the real benefit for me would be something else: compiler
issues an error if the expression you marked constexpr is not...

Subject: Re: 2024rc1
Posted by Lance on Mon, 21 Oct 2024 16:12:11 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 21 October 2024 08:45Lance wrote on Mon, 21 October 2024 13:01

A compiler that encounters a non-constexpr if-statement with a constexpr conditional may issue a
warning advising you to use if constexpr instead. This will ensure that compile-time evaluation will
occur (even if optimizations are disabled).

Well, thinking about it, I guess actually the real benefit for me would be something else: compiler
issues an error if the expression you marked constexpr is not...

Agreed. Like "override", make a programmer's intention more explicit, and do, more important
than but similar, compiler check when it doesn't going as claimed by the programmer.

Reminds me of a related case, where constexpr seems to be helpful or possibly necessary.

union Flags{
	int32 dummy;
	struct{
		byte	borderLeft :3;
		byte	borderRight :3;
		byte	borderTop :3;
		byte	borderBottom:3;
		byte	halign :2;
		byte	valign :2; //16th bit
	
		bool	faceNotNull :1;
		bool	boldNotNull :1;
		bool	heightNotNull :1;

Page 38 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61039#msg_61039
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61039
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=12336&goto=61041#msg_61041
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=61041
https://www.ultimatepp.org/forums/index.php

		bool	widthNotNull :1;
		bool	underlineNotNull:1;
		bool	italicNotNull :1;
		bool	strikeoutNotNull:1; //23rd bit
	};
	
	constexpr Flags() : dummy(0){ static_assert(sizeof(*this)==sizeof(dummy)); }
	
	
	static constexpr int32 FontMask()
	{
		Flags f;
		f.faceNotNull = true;
		f.boldNotNull = true;
		f.heightNotNull = true;
		f.widthNotNull = true;
		f.underlineNotNull = true;
		f.italicNotNull = true;
		f.strikeoutNotNull = true;
		return f.dummy;
	}
};

It's a somewhat contrived example. I am not sure ,for int32 FontMask(), if I don't it constexpr, will
the code be compiled same as if I do. It's totally possible they do with todays smart and agressive
as crazy compiler optimization.

Page 39 of 39 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

