
Subject: Derivating from Vector<>
Posted by victorb on Sat, 03 Mar 2007 19:12:13 GMT
View Forum Message <> Reply to Message

I am trying to derivate a class from Vector<...> but I can't get it to work. Any help from the Upp
community would be welcome.

Here is some sample code:

#include <Core/Core.h>

using namespace Upp;

class IntVector : public DeepCopyOption<IntVector, Vector<int> >
{
public:
	IntVector(){Cout() << "IntVector\n"; }
	
	virtual ~IntVector(){Cout() << "~IntVector\n";}
	
	IntVector(const IntVector &src, int) {
		::new IntVector;
		Vector<int>(src, 0);
		name = src.name;
		Cout() << "DCC\n";				
	}

	String name;
	
	String ToString(void) {
		String dump;
		
		dump << name << " ";
	
		if (IsPicked()) return dump << "Picked";
		
		for (int i = 0; i < GetCount(); i++) {
			dump << At(i) << " ";
		}
		return dump;
	}

};

CONSOLE_APP_MAIN
{
	Cout() << "iv\n";
	IntVector iv;

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8343#msg_8343
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8343
https://www.ultimatepp.org/forums/index.php

	
	iv.name = "IV";
	
	iv.Add(5);
	iv.Add(6);
	
	Cout() << "iv2\n";
	IntVector iv2(iv, 0);

	Cout() << iv.ToString() << "\n";
	Cout() << iv2.ToString() << "\n";

}

I expect iv2 to be equal to iv at the end. There is probably something wrong with the deep copy
constructor but I really can't figure it out.

Victor

Subject: Re: Deriving from Vector<>
Posted by victorb on Sat, 03 Mar 2007 19:37:46 GMT
View Forum Message <> Reply to Message

I have found something working

	IntVector(const IntVector &src, int) {	
		::new IntVector;	
		for (int i = 0; i < src.GetCount(); i++)
			At(i) = src[i];		
		name = src.name;
		Cout() << "DCC\n";				
	}

I would need to add some check in order to make sure that src is not picked...
But really there should be a nicer solution.

Subject: Re: Deriving from Vector<>
Posted by victorb on Sat, 03 Mar 2007 19:48:25 GMT
View Forum Message <> Reply to Message

Another working solution:

	IntVector(const IntVector &src, int) {	
		::new IntVector;	

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8344#msg_8344
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8344
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8345#msg_8345
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8345
https://www.ultimatepp.org/forums/index.php

		__DeepCopy(src);
		name = src.name;
		Cout() << "DCC\n";				
	}

But this require to change __DeepCopy access to protected in Vcont.h

Anything better ?

Subject: Re: Deriving from Vector<>
Posted by victorb on Sat, 03 Mar 2007 21:17:08 GMT
View Forum Message <> Reply to Message

Actually latest does not work (not recursive)

Subject: Re: Deriving from Vector<>
Posted by victorb on Tue, 06 Mar 2007 23:54:48 GMT
View Forum Message <> Reply to Message

I think that the solution is:

class IntVector : public Vector<int>
{
public:
	IntVector(){Cout() << "IntVector\n"; }
	
	virtual ~IntVector(){Cout() << "~IntVector\n";}
	
	IntVector(const IntVector &src, int) : Vector<int>(src, 0)
 {
		name = src.name;
	}

	String name;
	
};

Subject: Re: Deriving from Vector<>
Posted by victorb on Wed, 07 Mar 2007 00:14:52 GMT
View Forum Message <> Reply to Message

not so sure but I'll find...

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8346#msg_8346
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8346
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8399#msg_8399
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8399
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8401#msg_8401
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8401
https://www.ultimatepp.org/forums/index.php

Subject: Re: Derivating from Vector<>
Posted by victorb on Wed, 07 Mar 2007 00:30:59 GMT
View Forum Message <> Reply to Message

This seems to do the trick:

class IntVector : public DeepCopyOption<IntVector>, public Vector<int>
{
public:
	IntVector(){Cout() << "IntVector\n"; }
	
	virtual ~IntVector(){Cout() << "~IntVector\n";}
	
	IntVector(const IntVector &src, int) : Vector<int>(src, 0)
	{	
		name = src.name;
		Cout() << "DCC\n";
	}

};

Subject: Re: Derivating from Vector<>
Posted by victorb on Wed, 07 Mar 2007 16:05:16 GMT
View Forum Message <> Reply to Message

Simpler, without having to use multiple inheritance:

class IntVector : public DeepCopyOption<IntVector, Vector<int> >
{
public:
	IntVector(){Cout() << "IntVector\n"; }
	
	virtual ~IntVector(){Cout() << "~IntVector\n";}
	
	IntVector(const IntVector &src, int)
	{	
		Append(src);
		name = src.name;
	}
	
 String name;

};

Should be the ultimate solution

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8402#msg_8402
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8402
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8406#msg_8406
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8406
https://www.ultimatepp.org/forums/index.php

Subject: Re: Derivating from Vector<>
Posted by mirek on Thu, 08 Mar 2007 12:55:34 GMT
View Forum Message <> Reply to Message

Well, derivating from container is possible, but generally not quite a good idea. This is true both
for U++Core and STL...

Mirek

Subject: Re: Derivating from Vector<>
Posted by victorb on Thu, 08 Mar 2007 15:30:44 GMT
View Forum Message <> Reply to Message

The main reasons because derivating from containers seem to be:
1- the lack of virtual destructor,
2- member function are not virtual then you can override them.

However in my case I am just adding a few properties to Vector<> and I don't want to have to
rewrite the Add()/Remove()/... then I'll stick with inheritance. I agree that composition should be
the preferred way in more complex cases.

Thanks,
Victor

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8415#msg_8415
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8415
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=41
https://www.ultimatepp.org/forums/index.php?t=rview&th=2088&goto=8422#msg_8422
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=8422
https://www.ultimatepp.org/forums/index.php

