
Subject: "better" version of Iscale functions
Posted by mdelfede on Tue, 01 Apr 2008 21:10:55 GMT
View Forum Message <> Reply to Message

In file 'mathutils.cpp' the Iscale...() functions use some floating point math, when assembly is
unavailable OR when it's not compatible with intel syntax (I.E. GCC and MinGW).
That makes it slow and not showing divide-by-0 errors when third argument is 0.
So, here an (IMHO) better version of such functions :

#include "Core.h"

// iscale: computes x * y / z.

#ifdef flagGCC
#define __USE_64BIT_MATH__
#endif

NAMESPACE_UPP

int iscale(int x, int y, int z)
{
#ifdef __NOASSEMBLY__
#ifndef __USE_64BIT_MATH__
	return int(x * (double)y / z);
#else
	int64_t res = x;
	res *= y;
	res /= z;
	return (int)res;
#endif
#else
	__asm
	{
		mov		eax, [x]
		imul	[y]
		idiv	[z]
	}
#endif
}

// iscalefloor: computes x * y / z, rounded towards -infty.

int iscalefloor(int x, int y, int z)
{
#ifdef __NOASSEMBLY__
#ifndef __USE_64BIT_MATH__
	return (int)ffloor(x * (double)y / z);
#else

Page 1 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15129#msg_15129
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15129
https://www.ultimatepp.org/forums/index.php

	int64_t res = x;
	int64_t mulres = res * y;
	res = mulres / z;
	if(res * z != mulres)
		res--;
	return (int)res;
#endif
#else
	__asm
	{
		mov		eax, [x]
		imul	[y]
		idiv	[z]
		and		edx, edx
		jge		__1
		dec		eax
	__1:
	}
#endif
}

// iscaleceil: computes x * y / z, rounded towards +infty.

int iscaleceil(int x, int y, int z)
{
#ifdef __NOASSEMBLY__
#ifndef __USE_64BIT_MATH__
	return fceil(x * (double)y / z);
#else
	int64_t res = x;
	int64_t mulres = res * y;
	res = mulres / z;
	if(res * z != mulres)
		res++;
	return (int)res;
#endif
#else
	__asm
	{
		mov		eax, [x]
		imul	[y]
		idiv	[z]
		and		edx, edx
		jle		__1
		inc		eax
	__1:
	}
#endif

Page 2 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

}

BTW, we could completely drop the assembly code, as-is it's not portable between compilers with
greater integer width.
My version is also *not* portable on compilers with 64 bit wide integers, but can be made ok just
changing function prototype :

int32_t iscale(int32_t x, int32_t y, int32_t z)

Leaving so to the compiler the integer width check and warnings.

Attached here the patched 'mathutil.cpp' (NO patched function prototype, as it'll require Core.h
patch too).

Ciao

Max

File Attachments
1) mathutil.cpp, downloaded 394 times

Subject: Re: "better" version of Iscale functions
Posted by mirek on Wed, 02 Apr 2008 13:11:16 GMT
View Forum Message <> Reply to Message

mdelfede wrote on Tue, 01 April 2008 17:10
BTW, we could completely drop the assembly code, as-is it's not portable between compilers with
greater integer width.

Yes, but int64 does not come cheap on non-64 architecture. Maybe even that FP computation
could be faster. Of course, as long as FP is performed by HW. For ARM this new iscale can be
good.

Quote:
My version is also *not* portable on compilers with 64 bit wide integers, but can be made ok just
changing function prototype :

int32_t iscale(int32_t x, int32_t y, int32_t z)

Leaving so to the compiler the integer width check and warnings.

IMO, that really is not that bug trouble, as any serious portable code should work with 32-bit int.

Page 3 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=1122
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15138#msg_15138
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15138
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Wed, 02 Apr 2008 14:48:36 GMT
View Forum Message <> Reply to Message

luzr wrote on Wed, 02 April 2008 15:11mdelfede wrote on Tue, 01 April 2008 17:10
BTW, we could completely drop the assembly code, as-is it's not portable between compilers with
greater integer width.

Yes, but int64 does not come cheap on non-64 architecture. Maybe even that FP computation
could be faster. Of course, as long as FP is performed by HW. For ARM this new iscale can be
good.

I thought you were in holydays

Back to Iscale, I don't know about modern processors that does have an hardware ftp and doesn't
have 32x32->64 bit mul and 64/32 ->32 bit div core instructions... but I can be wrong.
Yet, I don't remember if intel ones works just with unsigned or signed or both integers...
BTW, I noticed that my iscale needs to work with 32 bit result; if not it'll use full 64 bit math for the
multiply (in iscalefloor and iscaleceil) which can be slow.
I guess that using 32x32 multiply and 64/32 division, GCC translates it directly in DIV and MUL,
but I've not checked yet.

Quote:
My version is also *not* portable on compilers with 64 bit wide integers, but can be made ok just
changing function prototype :

int32_t iscale(int32_t x, int32_t y, int32_t z)

Leaving so to the compiler the integer width check and warnings.

IMO, that really is not that bug trouble, as any serious portable code should work with 32-bit int.

Mirek[/quote]

I can agree, but I think more and more that the lack of width specs in C++ is really a nasty stuff.
Now it's too late, but if I'd have to write a framework from scratch, I'd use some typedef'd int8,
int16, int32 and so on stuffs.

BTW, our Iscale is much better than micro$oft's one, MulDiv, which returns -1 on 0 divisor.... so on
both

MulDiv(1,-1,1)

Page 4 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15140#msg_15140
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15140
https://www.ultimatepp.org/forums/index.php

MulDiv(a, b,0)

you get -1 as result.

Another possibility would be to use GCC built in asm, which is much different in syntax from Intel
one (MS), but it's quite complicated, even if much more powerful.

Max

Subject: Re: "better" version of Iscale functions
Posted by mirek on Sun, 06 Apr 2008 02:47:32 GMT
View Forum Message <> Reply to Message

mdelfede wrote on Wed, 02 April 2008 10:48
Back to Iscale, I don't know about modern processors that does have an hardware ftp and doesn't
have 32x32->64 bit mul and 64/32 ->32 bit div core instructions... but I can be wrong.
Yet, I don't remember if intel ones works just with unsigned or signed or both integers...
BTW, I noticed that my iscale needs to work with 32 bit result; if not it'll use full 64 bit math for the
multiply (in iscalefloor and iscaleceil) which can be slow.
I guess that using 32x32 multiply and 64/32 division, GCC translates it directly in DIV and MUL,
but I've not checked yet.

Well, this is what MSC does seem to do to divide these numbers:

0041A920 push edi
0041A921 push esi
0041A922 push ebx
0041A923 xor edi,edi
0041A925 mov eax,[esp+0x14]
0041A929 or eax,eax
0041A92B jnl 0x41a941
0041A92D inc edi
0041A92E mov edx,[esp+0x10]
0041A932 neg eax
0041A934 neg edx
0041A936 sbb eax,byte +0x0
0041A939 mov [esp+0x14],eax
0041A93D mov [esp+0x10],edx
0041A941 mov eax,[esp+0x1c]
0041A945 or eax,eax
0041A947 jnl 0x41a95d
0041A949 inc edi
0041A94A mov edx,[esp+0x18]
0041A94E neg eax

Page 5 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15159#msg_15159
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15159
https://www.ultimatepp.org/forums/index.php

0041A950 neg edx
0041A952 sbb eax,byte +0x0
0041A955 mov [esp+0x1c],eax
0041A959 mov [esp+0x18],edx
0041A95D or eax,eax
0041A95F jnz 0x41a979
0041A961 mov ecx,[esp+0x18]
0041A965 mov eax,[esp+0x14]
0041A969 xor edx,edx
0041A96B div ecx
0041A96D mov ebx,eax
0041A96F mov eax,[esp+0x10]
0041A973 div ecx
0041A975 mov edx,ebx
0041A977 jmp short 0x41a9ba
0041A979 mov ebx,eax
0041A97B mov ecx,[esp+0x18]
0041A97F mov edx,[esp+0x14]
0041A983 mov eax,[esp+0x10]
0041A987 shr ebx,1
0041A989 rcr ecx,1
0041A98B shr edx,1
0041A98D rcr eax,1
0041A98F or ebx,ebx
0041A991 jnz 0x41a987
0041A993 div ecx
0041A995 mov esi,eax
0041A997 mul dword [esp+0x1c]
0041A99B mov ecx,eax
0041A99D mov eax,[esp+0x18]
0041A9A1 mul esi
0041A9A3 add edx,ecx
0041A9A5 jc 0x41a9b5
0041A9A7 cmp edx,[esp+0x14]
0041A9AB ja 0x41a9b5
0041A9AD jc 0x41a9b6
0041A9AF cmp eax,[esp+0x10]
0041A9B3 jna 0x41a9b6
0041A9B5 dec esi
0041A9B6 xor edx,edx
0041A9B8 mov eax,esi
0041A9BA dec edi
0041A9BB jnz 0x41a9c4
0041A9BD neg edx
0041A9BF neg eax
0041A9C1 sbb edx,byte +0x0
0041A9C4 pop ebx
0041A9C5 pop esi

Page 6 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

0041A9C6 pop edi
0041A9C7 ret 0x10

I would say we should better learn GCC assembly syntax

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mirek on Sun, 06 Apr 2008 02:51:33 GMT
View Forum Message <> Reply to Message

I can agree, but I think more and more that the lack of width specs in C++ is really a nasty stuff.
Now it's too late, but if I'd have to write a framework from scratch, I'd use some typedef'd int8,
int16, int32 and so on stuffs.

Well, that might not be that good either.

I see "int" as type that is at least 32-bit (not correct, but reasonable guess today) and is the most
optimal for target architecture.

There might be CPU where int is 64-bit and 32-bit bit int is in fact less optimal. In that case, using
int32 everywhere would mean less optimal code.

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Sun, 06 Apr 2008 17:36:21 GMT
View Forum Message <> Reply to Message

luzr wrote on Sun, 06 April 2008 04:47mdelfede wrote on Wed, 02 April 2008 10:48
Back to Iscale, I don't know about modern processors that does have an hardware ftp and doesn't
have 32x32->64 bit mul and 64/32 ->32 bit div core instructions... but I can be wrong.
Yet, I don't remember if intel ones works just with unsigned or signed or both integers...
BTW, I noticed that my iscale needs to work with 32 bit result; if not it'll use full 64 bit math for the
multiply (in iscalefloor and iscaleceil) which can be slow.
I guess that using 32x32 multiply and 64/32 division, GCC translates it directly in DIV and MUL,
but I've not checked yet.

Well, this is what MSC does seem to do to divide these numbers:

Page 7 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15160#msg_15160
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15160
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15166#msg_15166
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15166
https://www.ultimatepp.org/forums/index.php

0041A920 push edi
0041A921 push esi
0041A922 push ebx
0041A923 xor edi,edi
0041A925 mov eax,[esp+0x14]
0041A929 or eax,eax
0041A92B jnl 0x41a941
0041A92D inc edi
0041A92E mov edx,[esp+0x10]
0041A932 neg eax
0041A934 neg edx
0041A936 sbb eax,byte +0x0
0041A939 mov [esp+0x14],eax
0041A93D mov [esp+0x10],edx
0041A941 mov eax,[esp+0x1c]
0041A945 or eax,eax
0041A947 jnl 0x41a95d
0041A949 inc edi
0041A94A mov edx,[esp+0x18]
0041A94E neg eax
0041A950 neg edx
0041A952 sbb eax,byte +0x0
0041A955 mov [esp+0x1c],eax
0041A959 mov [esp+0x18],edx
0041A95D or eax,eax
0041A95F jnz 0x41a979
0041A961 mov ecx,[esp+0x18]
0041A965 mov eax,[esp+0x14]
0041A969 xor edx,edx
0041A96B div ecx
0041A96D mov ebx,eax
0041A96F mov eax,[esp+0x10]
0041A973 div ecx
0041A975 mov edx,ebx
0041A977 jmp short 0x41a9ba
0041A979 mov ebx,eax
0041A97B mov ecx,[esp+0x18]
0041A97F mov edx,[esp+0x14]
0041A983 mov eax,[esp+0x10]
0041A987 shr ebx,1
0041A989 rcr ecx,1
0041A98B shr edx,1
0041A98D rcr eax,1
0041A98F or ebx,ebx
0041A991 jnz 0x41a987
0041A993 div ecx
0041A995 mov esi,eax
0041A997 mul dword [esp+0x1c]

Page 8 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

0041A99B mov ecx,eax
0041A99D mov eax,[esp+0x18]
0041A9A1 mul esi
0041A9A3 add edx,ecx
0041A9A5 jc 0x41a9b5
0041A9A7 cmp edx,[esp+0x14]
0041A9AB ja 0x41a9b5
0041A9AD jc 0x41a9b6
0041A9AF cmp eax,[esp+0x10]
0041A9B3 jna 0x41a9b6
0041A9B5 dec esi
0041A9B6 xor edx,edx
0041A9B8 mov eax,esi
0041A9BA dec edi
0041A9BB jnz 0x41a9c4
0041A9BD neg edx
0041A9BF neg eax
0041A9C1 sbb edx,byte +0x0
0041A9C4 pop ebx
0041A9C5 pop esi
0041A9C6 pop edi
0041A9C7 ret 0x10

I would say we should better learn GCC assembly syntax

Mirek

Wow, that's what I call "optimizing compiler".....

Max

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Sun, 06 Apr 2008 18:05:38 GMT
View Forum Message <> Reply to Message

Btw, I guess GCC does some better optimizazions in this case :

int iscale(int x, int y, int z)
{
 int64_t res = x;
 res *= y;
 res /= z;
 return (int)res;
}

Page 9 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15167#msg_15167
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15167
https://www.ultimatepp.org/forums/index.php

gets translated as :

.globl _ZN3Upp6iscaleEiii
	.type	_ZN3Upp6iscaleEiii, @function
_ZN3Upp6iscaleEiii:
.LFB4039:
	.file 4 "/home/massimo/sources/upp-svn/uppsrc/Core/mathutil.cpp"
	.loc 4 11 0
	pushq	%rbp
.LCFI15:
	movq	%rsp, %rbp
.LCFI16:
	movl	%edi, -20(%rbp)
	movl	%esi, -24(%rbp)
	movl	%edx, -28(%rbp)
.LBB2:
	.loc 4 17 0
	movl	-20(%rbp), %eax
	cltq
	movq	%rax, -8(%rbp)
	.loc 4 18 0
	movl	-24(%rbp), %eax
	movslq	%eax,%rdx
	movq	-8(%rbp), %rax
	imulq	%rdx, %rax
	movq	%rax, -8(%rbp)
	.loc 4 19 0
	movl	-28(%rbp), %eax
	cltq
	movq	-8(%rbp), %rdx
	movq	%rax, %rcx
	movq	%rdx, %rax
	sarq	$63, %rdx
	idivq	%rcx
	movq	%rax, -8(%rbp)
	.loc 4 20 0
	movq	-8(%rbp), %rax
.LBE2:
	.loc 4 30 0
	leave
	ret

If you drop assembly directive and/or line references and other stuffs, you can see that work is
done with just one imul and one idiv... like your assembly version. The rest is just registry moving
stuffs. I don't know what happens if you compile it with full optimization, but I guess mostly of them

Page 10 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

just disappears.
And I think that's still much quicker than floating point version.

Max

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Sun, 06 Apr 2008 18:14:08 GMT
View Forum Message <> Reply to Message

... and, just because I'm curious, that's the -O3 full optimized GCC assembly code :

	movslq	%edi,%rax
	movslq	%esi,%rsi
	movslq	%edx,%rdx
	imulq	%rsi, %rax
	movq	%rdx, %rcx
	movq	%rax, %rdx
	sarq	$63, %rdx
	idivq	%rcx
	ret

Well, I could say that's just 2-3 mov's ahead from by hand assembly code....

Max

Subject: Re: "better" version of Iscale functions
Posted by mirek on Thu, 10 Apr 2008 00:44:58 GMT
View Forum Message <> Reply to Message

Now, this is an argument

Applied. (I have deleted float version altogether - either it is MSC on Win32 which is unable to do
it right using int64, or it is GCC or MSC on ARM and ARM does not have FP).

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mirek on Thu, 10 Apr 2008 00:46:44 GMT
View Forum Message <> Reply to Message

Page 11 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15168#msg_15168
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15168
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15214#msg_15214
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15214
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15215#msg_15215
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15215
https://www.ultimatepp.org/forums/index.php

Oh, and changed to "int64" too...

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Thu, 10 Apr 2008 13:07:51 GMT
View Forum Message <> Reply to Message

luzr wrote on Thu, 10 April 2008 02:44Now, this is an argument

Applied. (I have deleted float version altogether - either it is MSC on Win32 which is unable to do
it right using int64, or it is GCC or MSC on ARM and ARM does not have FP).

Mirek

Well, even if usually MSC optimizes better than GCC, that's not always true
BTW, I'm surprised on how bad does it MSC, having hardware instruction on x86 processors for
32x32->64 bit multiply (signed AND unsigned) and 64/32->32 bit divide. Maybe they're still
anchored to good old 8088 assembly code...

Max

Subject: Re: "better" version of Iscale functions
Posted by mirek on Thu, 10 Apr 2008 16:01:32 GMT
View Forum Message <> Reply to Message

mdelfede wrote on Thu, 10 April 2008 09:07luzr wrote on Thu, 10 April 2008 02:44Now, this is an
argument

Applied. (I have deleted float version altogether - either it is MSC on Win32 which is unable to do
it right using int64, or it is GCC or MSC on ARM and ARM does not have FP).

Mirek

Well, even if usually MSC optimizes better than GCC

Actually, this is no longer true. I am not sure when it happened (IMO sometime around 4.1 version
, but current GCC produces faster code on average.

Quote:
BTW, I'm surprised on how bad does it MSC, having hardware instruction on x86 processors for
32x32->64 bit multiply (signed AND unsigned) and 64/32->32 bit divide. Maybe they're still
anchored to good old 8088 assembly code...

Page 12 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15227#msg_15227
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15227
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15231#msg_15231
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15231
https://www.ultimatepp.org/forums/index.php

I guess they just do not detect that it is 32x32... and just use normal 64x64 routine.

Mirek

Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Fri, 11 Apr 2008 07:26:43 GMT
View Forum Message <> Reply to Message

luzr wrote on Thu, 10 April 2008 18:01mdelfede wrote on Thu, 10 April 2008 09:07luzr wrote on
Thu, 10 April 2008 02:44Now, this is an argument

Applied. (I have deleted float version altogether - either it is MSC on Win32 which is unable to do
it right using int64, or it is GCC or MSC on ARM and ARM does not have FP).

Mirek

Well, even if usually MSC optimizes better than GCC

Actually, this is no longer true. I am not sure when it happened (IMO sometime around 4.1 version
, but current GCC produces faster code on average.

Well, I think that when they "killed" the only true competitor in c++ compilers (Borland) they've lost
interest on improving their compiler...

Quote:
I guess they just do not detect that it is 32x32... and just use normal 64x64 routine.

Indeed. But that's a really bad optimizer if it can't detect it.

Max

Page 13 of 13 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15236#msg_15236
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15236
https://www.ultimatepp.org/forums/index.php

