
Subject: MT anomaly...
Posted by mirek on Wed, 16 Apr 2008 10:29:09 GMT
View Forum Message <> Reply to Message

I am now working on some advanced "MT topics" and have encountered this anomaly:

#include <Core/Core.h>

using namespace Upp;

#ifdef PLATFORM_POSIX
__thread int threadid;
#else
__declspec(thread) int threadid;
#endif

#define LLOG(x) LOG((threadid) << " " << x << ", count " << count)

RWMutex rwlock;
VectorMap<int, String> cache;

String Fn(int x)
{
	return AsString(sin(sqrt((double)x)));
}

void CheckResult(int x, const String& r)
{
	if(r != Fn(x)) {
		DUMP(r);
		DUMP(Fn(x));
		Panic("Failure! " + AsString(threadid));
	}
}

int writes, removes;

void WorkThread(int id)
{
	threadid = id;
	for(int i = 0; i < 200000000; i++) {
		if(i % 10000 == 0)
			INTERLOCKED
				Cout() << id << ": " << i << ", writes: " << writes << ", removes: " << removes << "\n";
		int x = rand() & 0x7fff;
		rwlock.EnterRead();
		int q = cache.Find(x);

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15324#msg_15324
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15324
https://www.ultimatepp.org/forums/index.php

		if(q >= 0) {
			String r = cache[q];
			CheckResult(x, r);
			for(int i = 0; i < 100; i++)
				Fn(x);
			rwlock.LeaveRead();
		}
		else {
			rwlock.LeaveRead();
			rwlock.EnterWrite();
			q = cache.Find(x);
			if(q >= 0)
				CheckResult(x, cache[q]);
			else {
				writes++;
				if(cache.GetCount() >= 0x7000) {
					removes++;
					cache.Remove(0, 100);
				}
				cache.Add(x, Fn(x));
			}
			rwlock.LeaveWrite();
		}
	}
}

CONSOLE_APP_MAIN
{
	Thread t[20];
	for(int i = 0; i < 9; i++)
		t[i].Run(callback1(WorkThread, i + 1));
	WorkThread(0);
	for(int i = 0; i < 9; i++)
		t[i].Wait();
}

This is basically a code to test RWMutex doing something reasonable - simulating cache.

This works as expected in Win32, fully utilizing both of my cores, but in Linux I am unable to get
more than 60% CPU utilization. Obviously, some weird contention is involved, if only I would know
why....

Any ideas?

Mirek

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: MT anomaly...
Posted by tvanriper on Sun, 11 May 2008 17:18:24 GMT
View Forum Message <> Reply to Message

Maybe I'm totally off-base here, and I haven't looked at the code, but are you multi-threading at
the kernel or user level?

If you're using the POSIX library calls, you're probably multi-threading through user level
threading, which means you probably won't get at multiple cores. You're still multi-threading, but
at the user level, you can't get at the other core; that requires a system call of some kind that most
user level libraries know nothing about.

If you're using the system calls that Linux offers (kernel level threading), then I don't know why
you're seeing this kind of performance; you should be seeing both cores used.

Subject: Re: MT anomaly...
Posted by mirek on Sun, 11 May 2008 17:43:53 GMT
View Forum Message <> Reply to Message

tvanriper wrote on Sun, 11 May 2008 13:18Maybe I'm totally off-base here, and I haven't looked at
the code, but are you multi-threading at the kernel or user level?

If you're using the POSIX library calls, you're probably multi-threading through user level
threading, which means you probably won't get at multiple cores. You're still multi-threading, but
at the user level, you can't get at the other core; that requires a system call of some kind that most
user level libraries know nothing about.

If you're using the system calls that Linux offers (kernel level threading), then I don't know why
you're seeing this kind of performance; you should be seeing both cores used.

AFAIK, pthreads work through system threads.

In any case, 60% means I am actually USING another core...

Anyway, month later I think this is just example of contention problem...

Mirek

Subject: Re: MT anomaly...
Posted by mirek on Thu, 15 May 2008 13:09:45 GMT
View Forum Message <> Reply to Message

BTW, further thinking about the issue, I am going to introduce contention profiling to U++.

Something like

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=468
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15844#msg_15844
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15844
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15845#msg_15845
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15845
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15910#msg_15910
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15910
https://www.ultimatepp.org/forums/index.php

Mutex x;
CPROF(x);

would print approximate number of contention cases (defined as "blocked Enter") at the end of
process (just like TIMING / RTIMING does).

The only problem is that this needs more code in Mutex, making it less efficient, hencefore it will
only be activated by config flag....

Mirek

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

