Subject: MT anomaly...
Posted by mirek on Wed, 16 Apr 2008 10:29:09 GMT

View Forum Message <> Reply to Message

| am now working on some advanced "MT topics" and have encountered this anomaly:

#include <Core/Core.h>

using namespace Upp;

#ifdef PLATFORM_POSIX

__thread int threadid;

#else

__declspec(thread) int threadid;

#endif

#define LLOG(x) LOG((threadid) <<"" << x << ", count " << count)

RWMutex rwlock;
VectorMap<int, String> cache,;

String Fn(int x)

{
return AsString(sin(sqgrt((double)x)));
}
void CheckResult(int x, const String& r)
{
if(r '= Fn(x)) {
DUMP(r);
DUMP(Fn(x));
Panic("Failure! " + AsString(threadid));
}
}

int writes, removes;

void WorkThread(int id)
{
threadid = id;
for(int i = 0; i <200000000; i++) {
if(i % 10000 == 0)
INTERLOCKED
Cout() <<id << ™ " << i << ", writes: " << writes << ", removes: " << removes << "\n";
int x = rand() & Ox7fff;
rwlock.EnterRead();
int g = cache.Find(x);

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15324#msg_15324
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15324
https://www.ultimatepp.org/forums/index.php

if(g >=0) {
String r = cache[q];
CheckResult(x, r);
for(inti=0;i<100; i++)
Fn(x);
rwlock.LeaveRead();
}
else {
rwlock.LeaveRead();
rwlock.EnterWrite();
g = cache.Find(x);
if(q >=0)
CheckResult(x, cacheq]);
else {
writes++;
if(cache.GetCount() >= 0x7000) {
removes++;
cache.Remove(0, 100);

}
cache.Add(x, Fn(x));

}
rwlock.LeaveWrite();
}

}

}

CONSOLE_APP_MAIN

{

Thread t[20];

for(inti=0;1<9; i++)
t[i].Run(callbackl(WorkThread, i + 1));

WorkThread(0);
for(inti=0;1<9; i++)
t[i].Wait();

}

This is basically a code to test RWMutex doing something reasonable - simulating cache.

This works as expected in Win32, fully utilizing both of my cores, but in Linux | am unable to get
more than 60% CPU utilization. Obviously, some weird contention is involved, if only | would know
why....

Any ideas?

Mirek

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: MT anomaly...
Posted by tvanriper on Sun, 11 May 2008 17:18:24 GMT

View Forum Message <> Reply to Message

Maybe I'm totally off-base here, and | haven't looked at the code, but are you multi-threading at
the kernel or user level?

If you're using the POSIX library calls, you're probably multi-threading through user level
threading, which means you probably won't get at multiple cores. You're still multi-threading, but
at the user level, you can't get at the other core; that requires a system call of some kind that most
user level libraries know nothing about.

If you're using the system calls that Linux offers (kernel level threading), then | don't know why
you're seeing this kind of performance; you should be seeing both cores used.

Subject: Re: MT anomaly...
Posted by mirek on Sun, 11 May 2008 17:43:53 GMT

View Forum Message <> Reply to Message

tvanriper wrote on Sun, 11 May 2008 13:18Maybe I'm totally off-base here, and | haven't looked at
the code, but are you multi-threading at the kernel or user level?

If you're using the POSIX library calls, you're probably multi-threading through user level
threading, which means you probably won't get at multiple cores. You're still multi-threading, but
at the user level, you can't get at the other core; that requires a system call of some kind that most
user level libraries know nothing about.

If you're using the system calls that Linux offers (kernel level threading), then | don't know why
you're seeing this kind of performance; you should be seeing both cores used.

AFAIK, pthreads work through system threads.
In any case, 60% means | am actually USING another core...
Anyway, month later I think this is just example of contention problem...

Mirek

Subject: Re: MT anomaly...
Posted by mirek on Thu, 15 May 2008 13:09:45 GMT

View Forum Message <> Reply to Message

BTW, further thinking about the issue, | am going to introduce contention profiling to U++.

Something like

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=468
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15844#msg_15844
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15844
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15845#msg_15845
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15845
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3377&goto=15910#msg_15910
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15910
https://www.ultimatepp.org/forums/index.php

Mutex X;
CPROF(x);

would print approximate number of contention cases (defined as "blocked Enter") at the end of
process (just like TIMING / RTIMING does).

The only problem is that this needs more code in Mutex, making it less efficient, hencefore it will
only be activated by config flag....

Mirek

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

