
Subject: GCC code size optimizations on ARM - GNU/Linux - uClibC
Posted by chickenk on Wed, 18 Jun 2008 16:39:04 GMT
View Forum Message <> Reply to Message

Hi everyone,

I am currently using theIde as a cross platform IDE for my embedded platform based on an
arm926t core, running linux. So far so good, theIde is very useful and easy to configure to use a
cross-toolchain.

I made a few test in compiling sample apps based on the Core library as well. Using my
arm-linux-uclibc toolchain and a few customizations in the Core library to avoid MMX/SSE
detection and other assembly code, I get a 456kB output file for the Core06 example.

In an attempt to reduce the output binary code size as much as possible, I added
-ffunction-sections to the compiler options and --gc-sections to the linker options. It used to be a
great solution for me on some previous projects. All I got is... 453kB. Not much better. That also
means that the source files are well defined, since wrapping sections over object files or over
functions is quite the same.

Then I added -fdata-sections to the compiler options, and this time, the size is reduced to 260kB.
Great improvement, but makes me wonder:

does anybody here suspect this optimization to make my apps miserably fail later ? I will make
tests of course (I'm sharing the device platform so I cannot right now, but tomorrow probably), but
I may miss something that someone here already knows about the U++ library that needs this
option not to be set.

Anyway, I'll try to give you informed of my results, if anyone interested...

Lionel

Subject: Re: GCC code size optimizations on ARM - GNU/Linux - uClibC
Posted by mirek on Wed, 18 Jun 2008 18:10:55 GMT
View Forum Message <> Reply to Message

chickenk wrote on Wed, 18 June 2008 12:39Hi everyone,

I am currently using theIde as a cross platform IDE for my embedded platform based on an
arm926t core, running linux. So far so good, theIde is very useful and easy to configure to use a
cross-toolchain.

I made a few test in compiling sample apps based on the Core library as well. Using my
arm-linux-uclibc toolchain and a few customizations in the Core library to avoid MMX/SSE
detection and other assembly code, I get a 456kB output file for the Core06 example.

In an attempt to reduce the output binary code size as much as possible, I added

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=390
https://www.ultimatepp.org/forums/index.php?t=rview&th=3563&goto=16510#msg_16510
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16510
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3563&goto=16511#msg_16511
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16511
https://www.ultimatepp.org/forums/index.php

-ffunction-sections to the compiler options and --gc-sections to the linker options. It used to be a
great solution for me on some previous projects. All I got is... 453kB. Not much better. That also
means that the source files are well defined, since wrapping sections over object files or over
functions is quite the same.

Then I added -fdata-sections to the compiler options, and this time, the size is reduced to 260kB.
Great improvement, but makes me wonder:

does anybody here suspect this optimization to make my apps miserably fail later ? I will make
tests of course (I'm sharing the device platform so I cannot right now, but tomorrow probably), but
I may miss something that someone here already knows about the U++ library that needs this
option not to be set.

Anyway, I'll try to give you informed of my results, if anyone interested...

Lionel

Wow!

These are very interesting news - all of them

Please keep us informed about everything you are doing with ARM.

I am very surprised with data-sections results; maybe they could be applied to regular linux as
well. I was not even aware about this option:)

Mirek

Subject: Re: GCC code size optimizations on ARM - GNU/Linux - uClibC
Posted by chickenk on Fri, 20 Jun 2008 07:29:23 GMT
View Forum Message <> Reply to Message

Hello,

a few updates:

1. I was totally wrong about the -fdata-sections option. In fact my linker option --gc-sections was
not correctly set at first, and then I corrected it. I don't remember when I did the correction, but I
made new compilations and in fact the big size reduction is due to -ffunction-sections, not
-fdata-sections.

As an aside note, my linker option was wrong because I had to write "-Wl,--gc-sections" instead of
just "--gc-sections". Wouldn't it be better to prepend automatically the -Wl and -Xlinker arguments
to the linker options?

2. I compiled the Core06 example in various ways, with and without garbage-collecting sections,
-Os/-O2, with and without -ffunction-sections, etc.

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=390
https://www.ultimatepp.org/forums/index.php?t=rview&th=3563&goto=16518#msg_16518
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16518
https://www.ultimatepp.org/forums/index.php

The only executable that runs correctly is the one with debug information. All Optimal/Size/Speed
configurations have failed to run, most often with an unauthorized memory access exception and
a segfault. When I have more time, I will analyse the strace logs more, but right now I've not found
why this happens, and where exactly.

However, one thing to mention : my target has quite limited resources: 64MB RAM and around
60MB of free Flash space. The storage space is a Nand Flash and the filesystem type is jffs2.
There is no RTC so the date starts at 01-01-1970 at each reset.

I will try to investigate more, just wanted to give some (not so good) news.

regards,
Lionel

Subject: Re: GCC code size optimizations on ARM - GNU/Linux - uClibC
Posted by phirox on Fri, 11 Jul 2008 10:03:40 GMT
View Forum Message <> Reply to Message

Not sure if this will work for ARM, but another very interesting optimization I found is "-frepo" for
GCC/G++. Read more about it here: http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/Template-Instant
iation.html

It optimizes template functions(which U++ uses a lot) and generally reduces code size by 25%

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=527
https://www.ultimatepp.org/forums/index.php?t=rview&th=3563&goto=16785#msg_16785
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16785
https://www.ultimatepp.org/forums/index.php

