Subject: Interesting struggle with "Moveable<T>" usage in GCC
Posted by mr_ped on Thu, 17 Jul 2008 13:13:59 GMT

View Forum Message <> Reply to Message

Hello, | did hit recently a compilation error | didn't understand fully, still | did find a workaround, so
I'm fine, but maybe some compiler guru will be able to explain it better to me.

Let's consider (I always end with OOP design like this somewhere, I'm not sure whether it's a
curse or good thing, but my mind loves constructs like this one):

class CT {
public:

struct ST : Moveable<ST> {
intx,y;
%
¥
/INice little embedded struct inside a class.
/[Perfectly Moveable too, just two ints.

//[But now you want to initialize it like with classic struct:
[*1)* CT:STa={0,1}
2) CT:STb[2]={{0,1},{3,4}};

During compilation with GCC (didn't try it with MSC, sorry) you get errors:
1) error: braces around initializer for non-aggregate type 'CT::ST'
2) error: braces around scalar initializer for type 'CT::ST'

| was like, what's wrong with simple struct initializer? As this really does save me lot of time while
I'm writing unit tests, | decided to investigate it a bit more, and by hopeless trying to change every
piece of that source | figured out how to make it work. The "correct” way to define such struct to
be both Moveable, and allow you to write direct initialization with braces is like this:

/[classic struct definition
class CT {
public:

struct ST {
int x, y;
¥
3

/Imake it also moveable, so NTL will store it in Vector container
namespace Upp {
NTL_MOVEABLE(CT::ST);

}

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=3625&goto=16855#msg_16855
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16855
https://www.ultimatepp.org/forums/index.php

(I tried to compile the "fixed" source under MSC, now it's complaining about missing
DeepCopyConstruct ... fortunately after adding that one both compilers are happy (the manual
page http://www.ultimatepp.org/srcdoc$Core$pick $en-us.html did told me how to fix deep copy))

So, | have almost no idea why the compiler is such b*tch about basically the same source just
written in different way, but in case somebody hits this problem, I'm posting my "work around".

Also | welcome any reasonable explanation, or eventually fix to "Moveable<T>" if possible (I think
it's impossible, maybe due to template nature?), because it's much more neat to read in source "
Moveable<T>" than the NTL_MOVEABLE macro followed by 4 deepcopy functions in worst case
surrounded by yet another namespace definition :/. | prefer when the source contains minimum of
"accident” content, and looks almost like pure "essence" thing, if you know what | mean.

Subject: Re: Interesting struggle with "Moveable<T>" usage in GCC
Posted by mrjt on Tue, 22 Jul 2008 10:40:51 GMT

View Forum Message <> Reply to Message

The explanation for this is quite straightforward | think.

Structs with just public data members are essentially C aggregates, which can be initialised using
the {,} style list.

As soon as you add anything that stops it being a 'pure’ aggregate - such as a constructor,
inheritance (even from an empty class as is the case with Moveable<T>) or virtual functions - the
compiler starts treating the struct as a C++ class. As classes cannot be initialised like aggregates
you get the error.

For example:

/I This works with {,} initialisation
struct ST {

Point Get() { return Point(x, y); }
int x,y;

I3

/I These don't
struct BC {

|5

struct ST : BC{
int x,y;

I3

struct ST {

ST(: x(0), y(0) { }
int X, y;

I3

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=341
https://www.ultimatepp.org/forums/index.php?t=rview&th=3625&goto=16943#msg_16943
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16943
https://www.ultimatepp.org/forums/index.php

struct ST {

virtual Point Get() { return Point(x, y); }

int x,y,;
};As far as | can tell this is correct compiler behaviour, although it would be nice if it was a bit more
forgiving.

I'm not sure about your problem with NTL_MOVEABLE though, I just tried it with MingW and
MSC8 and had no problem with missing DeepCopyConstructs, but presumably you're using a
more complex structure than my test.

Subject: Re: Interesting struggle with "Moveable<T>" usage in GCC
Posted by mr_ped on Tue, 22 Jul 2008 13:36:31 GMT

View Forum Message <> Reply to Message

| was not aware of the aggregate/class flavors, that was the missing piece for me. (it's funny | use
C/C++ for quite some years, but | never really bothered to study the language itself extensively to
a point how well | did study ASM or Pascal, | just learn new things as | hit them during
programming)

| would expect this behavior with virtual functions, as then you have to init vtab pointer for every
instance, but the constructor and inheritance took me by surprise.

And yes, | would love a bit more intelligent and forgiving compiler, as from ASM point of view
there's no true different between struct with 2 ints, and same struct with constructor, | will keep
wishing.

Thank you for explanation, and about the deepcopy, yes, my real source is more complex, with
some "typedef Vector<almost_struct_class> TmyVector;" probably being the culprit.

This was just a bare minimum source to show how Moveable prevents you from braces
initialization. None of these are big problems, they just clutter my sources a bit more than it would
be necessary in ideal world, so | had to ask...

Edit:

And another syntax sugar which would make my sources look better would be direct initialization
of Vector container. | think with some clever C++ operator overloading this may be eventually
possible, or something which would be quite close, but | don't have time+will to look into it, and
heavy usage of operators makes me always to shiver a bit, as you have to never forget about
them when you read the source.

Subject: Re: Interesting struggle with "Moveable<T>" usage in GCC
Posted by mr_ped on Wed, 30 Jul 2008 10:14:47 GMT

View Forum Message <> Reply to Message

Another funny thing, if you mess up the optional deep copy functions (hamely

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=3625&goto=16946#msg_16946
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16946
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=3625&goto=17133#msg_17133
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=17133
https://www.ultimatepp.org/forums/index.php

DeepCopyConstruct to call the implicit copy constructor instead of your T(T, int) deep copy
constructor) for your class defined to be moveable trough that NTL_MOVEABLE macro:

you can end with Vector source which works with MSC8 (the implicit copy constructor is not called
at all), but does break under GCC. (with the wrong pick behavior assert)

| can't provide example because the source is too complex and basically it was my bug in
DeepCopyConstruct, so it's not problem of UPP.

It just made me to scratch my head a bit, that two compilers do use quite different way to
construct the final Vector related code for my class, MSC avoiding my bugged functions
completely.

Of course using "class A : MoveableAndDeepCopyOption<A> {};" fixed that and made my code
cleaner (and right now I didn't use direct initialization for that A class anymore), so if you are new
to UPP+pick behavior (like me), try to avoid making things by hand, and use rather those
Moveable<> and similar things whenever possible, it makes code clean and easy to read, and will
prevent you from doing silly mistakes (which may go undetected with one compiler and show just
later on another one).

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

