
Subject: Drawing raw data to an Image / Draw object?
Posted by blueapples on Wed, 08 Oct 2008 05:42:12 GMT
View Forum Message <> Reply to Message

Hi, I am starting to use the Magick++ library (http://www.imagemagick.org/Magick%2B%2B/) with
U++. So far, I have been able to link it in and actually make a few simple calls using the library.
However what I cannot figure out how to do is draw the results of these calls using U++'s systems.

I see that DrawImage has several methods that allow drawing lines, rectangles, etc. What I can't
find is a simple way to set individual pixels of an image. The Magick::Image object I am using to
manipulate images exposes an array of structures that provide R,G,B, and A values. What I need
is a way to "copy" these values to a U++ Image or Draw object in order to render the resulting
image in the U++ application.

How would I do this?

Subject: Re: Drawing raw data to an Image / Draw object?
Posted by kodos on Wed, 08 Oct 2008 08:03:45 GMT
View Forum Message <> Reply to Message

Use ImageBuffer

 http://www.ultimatepp.org/srcdoc$Draw$ImgTutorial$en-us.html Point #3
and
http://www.ultimatepp.org/src$Draw$Image$en-us.html

Subject: Re: Drawing raw data to an Image / Draw object?
Posted by blueapples on Wed, 08 Oct 2008 23:57:38 GMT
View Forum Message <> Reply to Message

Awesome! Thank you... I really need to read the whole manual I guess.

Subject: Re: Drawing raw data to an Image / Draw object?
Posted by blueapples on Thu, 09 Oct 2008 01:03:49 GMT
View Forum Message <> Reply to Message

This is what I've got so far. There's a pretty major problem though. The RGBA structure seems to
only allow a very limited color depth, namely what can fit in 3 bytes. Magick++ (and really most
image formats like JPG and PNG) allow many more colors than this makes possible. To get the
conversion to work I have to use a rather crude instrument, quantumToByte(), which converts
from Magick++'s 32 bit value to a byte. This makes high color images look just terrible... is there a
way to use greater color depth with ImageBuffer?

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=681
https://www.ultimatepp.org/forums/index.php?t=rview&th=3907&goto=18557#msg_18557
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18557
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=566
https://www.ultimatepp.org/forums/index.php?t=rview&th=3907&goto=18558#msg_18558
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18558
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=681
https://www.ultimatepp.org/forums/index.php?t=rview&th=3907&goto=18567#msg_18567
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18567
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=681
https://www.ultimatepp.org/forums/index.php?t=rview&th=3907&goto=18569#msg_18569
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18569
https://www.ultimatepp.org/forums/index.php

byte quantumToByte(m::Quantum q)
{
	return q / 65535 * 255;
}

class Canvas : public Ctrl {
	Image drawImg;
	
public:
	typedef Canvas CLASSNAME;
	Canvas();
	void Paint(Draw& draw);
	void SetImage(m::Image& newimage, int x = 0, int y = 0, int zoom = 1);
};

/* Canvas::SetImage: Copies pixles for the current view to a new
	Upp::Image object to be rendered on the control. The zoom value
	is a magnification multiplier - 1 is for actual size pixels, 2 for
	double sized pixels, etc. */
void Canvas::SetImage(m::Image& image, int x, int y, int zoom)
{
	Rect rect = this->GetRect();
	int width = rect.Width() / zoom;
	int height = rect.Height() / zoom;
	int zx, zy;
	RGBA p;
	
	// Constrain the viewport to the max size of the actual image
	if(width > image.columns())
		width = image.columns();
	if(height > image.rows())
		height = image.rows();
	
	m::PixelPacket *pixel = image.getPixels(x, y, width, height);
	
	ImageBuffer ib(width * zoom, height * zoom);

	byte i = 0;
	float v;
	for(int y = 0; y < height; y++) {
		//RGBA *l = ib[y];
		i = 0;
		for(int x = 0; x < width; x++) {

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

			
			if(zoom == 1) {
				ib[y * zoom][x * zoom].a = 255;
				ib[y * zoom][x * zoom].r = quantumToByte(pixel->red);
				ib[y * zoom][x * zoom].g = quantumToByte(pixel->green);
				ib[y * zoom][x * zoom].b = quantumToByte(pixel->blue);
			} else {
				// This really should use some sort of ASM box routine
				for(int zx = x * zoom; zx < (x+1) * zoom; zx++) {
					for(int zy = y * zoom; zy < (y+1) * zoom; zy++) {
						//if(zy + y < height && zx + x < width) {
							//p = ib[zy + y][zx + x];
							ib[zy][zx].a = 255;
							ib[zy][zx].r = quantumToByte(pixel->red);
							ib[zy][zx].g = quantumToByte(pixel->green);
							ib[zy][zx].b = quantumToByte(pixel->blue);
						//}
					}
				}
			}
			
			// Go to the next pixel
			pixel++;
		}
	}
	
	Premultiply(ib);
	drawImg = ib;
}

void Canvas::Paint(Draw& draw)
{
	Rect rect = this->GetRect();
	draw.DrawRect(0, 0, rect.Width(), rect.Height(), Gray());
	draw.DrawImage(0, 0, drawImg);
}

Subject: Re: Drawing raw data to an Image / Draw object?
Posted by mrjt on Thu, 09 Oct 2008 12:35:12 GMT
View Forum Message <> Reply to Message

As far as I know there is no Image support for greater the 32-bit depths, since that is the effective
limit of consumer display equipment.

But I believe your problem is that the conversion is wrong. I think it should be:
byte quantumToByte(m::Quantum q)

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=341
https://www.ultimatepp.org/forums/index.php?t=rview&th=3907&goto=18572#msg_18572
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18572
https://www.ultimatepp.org/forums/index.php

{
 // Equivalent to:
 // return (q * 255) / 65535);
 // or
 // return iscale(q, 255, 65535)
 return (q >> 8);
}
For correctness I believe you should replace the 8 with '(QuantumDepth - 8)', but that's really just
a guess from the ducumentation.

Alternatively you can #define QuantumDepth to 8 yourself to tell the library to use 32-bit and avoid
the conversion. If you're only planning on drawing to the screen this seems like a wise move to
also reduce memory consumption.

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

