
Subject: WinAPI UNICODE question
Posted by cbpporter on Sat, 15 Nov 2008 10:34:55 GMT
View Forum Message <> Reply to Message

I'm trying to obtain a version of Core that does not expose one single bit of platform specific code
at an interface level (but in implementation can use as much as needed), including WinAPI. This
is not that easy. Simply removing include <windows.h> would lead to days of tracking down
missing definitions.

So I started filtering windows.h, to make the task a lot easier. I also noticed some unneeded
headers this way and a couple of cases where I think there ares mall errors related to "A" and "W"
suffixes. Let me say that it is impressive how few WinAPI function U++ does actually use .

And this is where is stumbled across my question. For a given function f, under WinAPI there is a
fA version, which works on ANSI strings, and a fW function which works on Unicode strings. If you
want you application to be ansi, you leave the macro UNIDODE undefined, and f will automatically
be translated to fA through macro substitution. By declaring UNICODE, it will get translated to fW.
Unicode versions work only starting with windows 2000, but you can install some .dlls under
Win95/98 to handle a subset of Unicode. Did I understand this correctlly?

So there are tree options:
1. Leave UNICODE undefined and get apps that run on all systems.
2. Define UNICODE and only run on Win2000 and 95/98 if dll is available.
3. Detect if Unicode support is available, and then call A or W version of functions manually
depending on case.

I really can't figure out which one U++ uses. If I remove the #define SendMessage
SendMessageA (for example), I get compilation error, which hints that UNICODE is undefined and
we are using case number one. Also, there are some explicit cases where a W version is called,
which makes me think that we are still using case 1 as a compilation environment, but we are
trying to achieve functionality of 2/3 with the explicit calls of W variants in some cases.

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sun, 16 Nov 2008 00:10:49 GMT
View Forum Message <> Reply to Message

After two unsuccessful attempts which left me with an uncompilable mess and I had to revert, I
managed to get some good starting results.

As a first step I decided to move the whole block that prepares for the inclusion and includes
<windows.h> as close to the end of Core.h as possible. And I got pretty far: only Path.h, Gtypes.h,
Color.h, Lang.h, Xmlize.h and Win32Util.h must be included after windows.h. All other headers
from Core have interfaces that are independent of windows.h, but I had to do some trivial changes
in a lot of places. Most of the changes will even result in the same binary after compilation, so
compatibility issues should be inexistent.

I compiled TheIDE with both MINGW and MSC in DEBUG and Optimal mode, ran it and

Page 1 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19145#msg_19145
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19145
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19161#msg_19161
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19161
https://www.ultimatepp.org/forums/index.php

everything seems to be OK. Now I have to find a way to handle the last 6 headers...

Subject: Re: WinAPI UNICODE question
Posted by mirek on Sun, 16 Nov 2008 09:19:15 GMT
View Forum Message <> Reply to Message

I wonder a little bit, WHY?

To answer your question, we are using "3." - call 'W' version if running >=WinNT, 'A' version
otherwise.

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sun, 16 Nov 2008 10:33:20 GMT
View Forum Message <> Reply to Message

luzr wrote on Sun, 16 November 2008 11:19I wonder a little bit, WHY?

Well there are multiple possible answers.

First, it is problem of principle. U++ is my platform of choice for at least the next 2 years, and I
want it to be THE platform, not just a platform combined with another platform (WinAPI) and
another platform (various STD libs). So following this principle I don't want to wind up with a lot of
useless stuff (which I will never ever use and am not able to use if I want cross-platform behavior)
just for including a .h from U++.

Second, a practical consideration. Since U++ includes a lot of unnecessary and most importantlly
platform dependent stuff, and doesn't provide all capabilities under all platforms, and since I use
Windows as a primary development platform (and periodically compile under Linux), I end d up
using unintentionally a lot of crap that simply does not compile under Linux. Now I have the nice
situation of Windows version being OK and close to beta, and Linux one crippled for an
unpredictably long time. It is OK to use it if I make a conscious choice (i.e. include a system
dependent header), it's not OK if U++ allow me to compile that stuff by default.

Third, it is a principle of giving the precompiler less to work. Under MSC8, just for including Core.h
I get about 240.000 lines of code that are precompiled. Time that by the number of packages for
BLITZ builds and the number of compilation units for non BLITZ, and you do get a hefty sum.
Sure, the by removing all the stuff and winding up with an about 25.000 line precompilation I won't
be saving any lives, not even power bill (well maybe a completely unimportant sum), but still...

So in short:
#include <Core/Core.h>
CONSOLE_APP_MAIN
{

Page 2 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19162#msg_19162
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19162
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19163#msg_19163
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19163
https://www.ultimatepp.org/forums/index.php

 HWND hwnd;
}
Must not compile under Win32. The same goes if I replace HWND with pthread under Linux in a
MT build. Preferably not even strcpy would compile without including <string.h>, but standard lib is
stable enough to allow it (even though I can easily break cross-platform compatibility by calling
some public functions that don't respect the standards, but I'm not going to clean up standard C
library also).

Quote:
To answer your question, we are using "3." - call 'W' version if running >=WinNT, 'A' version
otherwise.

Mirek
OK, I think I understand now. And where version without "A" or "W" are called, "A" versions are
selected.

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sun, 16 Nov 2008 11:08:38 GMT
View Forum Message <> Reply to Message

PS: Could I interest you in a couple of small changes that would leave Core compatible with both
current code base and what I'm trying to achieve?

I'll use the first one as an example: in Defs.h, line 227,
typedef WCHAR wchar;
should be
typedef wchar_t wchar;
Actually this is what WCHAR does, so there should be absolutely no issues. Yet at this early
stage, windows.h is not needed, so it would be IMO better to not rely on it.

Subject: Re: WinAPI UNICODE question
Posted by mirek on Sun, 16 Nov 2008 18:03:54 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Sun, 16 November 2008 06:08PS: Could I interest you in a couple of small
changes that would leave Core compatible with both current code base and what I'm trying to
achieve?

I'll use the first one as an example: in Defs.h, line 227,
typedef WCHAR wchar;
should be
typedef wchar_t wchar;
Actually this is what WCHAR does, so there should be absolutely no issues. Yet at this early
stage, windows.h is not needed, so it would be IMO better to not rely on it.

Page 3 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19164#msg_19164
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19164
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19173#msg_19173
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19173
https://www.ultimatepp.org/forums/index.php

We need(ed) wchar to be compatible with win32 API. Using WCHAR in typedef is IMO safer way
how to achieve it.

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sun, 16 Nov 2008 21:40:55 GMT
View Forum Message <> Reply to Message

Well, I know that, but WCHAR is not available at interface level if I want to achieve my goal.
Anyway, in windows.h we have "typedef wchar_t WCHAR" and this is very unlikely to change.
Such aggressive assumptions are needed, like replacing HANDLE with void*. Their number is
quite limited though,and I think I had to replace about 5 different types with their underlying type.

Anyway, I'm down to my last two headers. Win32Util is easy, but Path is hard.

Other elements that are giving me a little trouble are the two .dli. Why was the .dli mechanism
used here. The functions seem complicatedly normal Win32 functions which where available
already. Is is for the structured call mechanism supplied by .dli or is there another reason?

Also, BLITZ is giving me funny issues. After an hour (or whatever the threshold is) has passed
since last edit, I suddenlly get duplicate definition errors). It's actually easy to correct something
like this,and even to not make them in the first place, but I'm not used to be on the lookout for
them.

Subject: Re: WinAPI UNICODE question
Posted by mirek on Mon, 17 Nov 2008 16:14:19 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Sun, 16 November 2008 16:40Well, I know that, but WCHAR is not available
at interface level if I want to achieve my goal.

A couple of years ago, I was trying something similar. I got stuck with all those types like "HWND"
etc... - it is mess to avoid using them in as class members... I guess, WCHAR is exactly the same
story.

Moreover, you need to expose them in public interface too from time to time. We definitely need
methods returning HWND, with LPARAM / WPARAM parameters etc...

Quote:
Such aggressive assumptions are needed, like replacing HANDLE with void*.

Exactly, that is where I have ended I have came to conculsion that it is not worth the trouble.

Page 4 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19176#msg_19176
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19176
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19182#msg_19182
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19182
https://www.ultimatepp.org/forums/index.php

Quote:
Other elements that are giving me a little trouble are the two .dli. Why was the .dli mechanism
used here. The functions seem complicatedly normal Win32 functions which where available
already. Is is for the structured call mechanism supplied by .dli or is there another reason?

A/W versions.

Quote:
Also, BLITZ is giving me funny issues. After an hour (or whatever the threshold is) has passed
since last edit, I suddenlly get duplicate definition errors).

You have not expected free lunch, right?

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Tue, 18 Nov 2008 11:41:57 GMT
View Forum Message <> Reply to Message

Another possible solution: introduce a flag and depending on it use either WinAPI types or their
equivalent types.

#idndef flagNOPS
typedef WCHAR UWCHAR;
#else
typedef wchar_t UWCHAR;
#endif

The different name is needed to differentiate between the types if the flag is not set. All functions
with platform dependent parameters or return values will use the Uxxxx variant, which will default
to the WinAPI version by default, but if someone want the other version, they simply add the flag. I
still have about 3 other solutions for that problem, but these two are the prettiest.

Except the issues of type names, there are two more:
1. Some macro's defined in windows.h are used which will no longer be available at that point.
This can easily be solved with introducing either a copy of that macro with a different name (so
that later you can include windows.h if needed or even better, by using an inline function, i.e.
replacing HIWORD with HighWord inline function.

2. The use of the operators that convert from Point to POINT must be replaces with the uses of a
function with exactly the same body as the operator, but which is an inline function that takes a
Point parameter rather than an operator. I've done this in my code base already and only accrued
in a few places, like in Draw.

Page 5 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19186#msg_19186
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19186
https://www.ultimatepp.org/forums/index.php

And that's about it. With types not taken from windows.h, not using the macros from there and the
issue with U++ geometric types, one can easily remove the windows reference and add it only to
really low level compilation units.

I'm pretty much done with code and preparing to tackle Draw, I'll still hand around Core a little
more to test and make sure that everything is OK. I also went over the packages from Bazaar (not
the latest from SVN, the ones from 2008.1) and there are no issues here either. I was really
expecting the docking functionality to at least not compile, but I'm glad to say I was wrong.

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sat, 22 Nov 2008 10:36:02 GMT
View Forum Message <> Reply to Message

OK, so I was about 20% through Draw and I was starting to feel the good old "this is getting really
old really fast". For every WinAPI reference I have to replace the type with the underlying one,
both in header and C++, and often I have to insert harmless but ugly casts. Following this method
I can't see myself finishing this, not to speak about merging with SVN anytime someone commits.
Auto merge is pretty smart, but it has it's limitations.

So I need a better solution and I found one: a variant of the pimpl idiom. All Hxxxxx WinAPI types
are pointers, and they receive their memory from some source (so it bypasses theproblem with
pimp: the need to allocate extra memory), so a forward declaration in in function declaration is
more than sufficient. So all I have to do is insert a forward struct and a typedef in Core.h
somewhere early, and thanks to the very permissive forward declaration and typedef rules
provided by the C++ standard (stuff which I usually would consider better not to compile), I can
leave pretty much all U++ header and .cpp files unmodified. This will make merges a lot easier.

So ignore all my previous suggestion (except the MACROs from WinAPI). I think this is the right
way to handle this. Very few changes to existing code base, yet still platform independent
interfaces.

It has the slight disadvantage that something like HINSTANCE h; will compile anywhere, but it's
just a pointer and you can't really introduce platform dependency with an opaque pointer, unless
you really want to.

It even maintains the 15% compilation time decrease under MSC when compiling Core tutorials. I
need to get more packages done before I can say how this percent will change when compiling
larger code base.

Now I have to undo my changes and experiment with this approach. If somebody is interested, I
can post here a Win32 independent version of Core once I consider it stable, and later Draw.

Page 6 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19235#msg_19235
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19235
https://www.ultimatepp.org/forums/index.php

Subject: Re: WinAPI UNICODE question
Posted by mirek on Sun, 23 Nov 2008 14:49:28 GMT
View Forum Message <> Reply to Message

I keed my eye on this effort, but I am neither optimisitic or enthusiastic.

Been there, tried that. In the end, the main problem is that you are still on host platform a need to
do platform specific stuff here and there. Means, among other things, you cannot afford name
clashes with both X11 and Win32 API.

Given this, including platform API headers is maybe a little bit unelegant, but the most
straightforward solution. The only real disadvantage I can see is longer build time.

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Sun, 23 Nov 2008 16:39:13 GMT
View Forum Message <> Reply to Message

Well there is one small problem: some function names get overridden with a different name. For
example, Upp::GetModuleFileName becomes Upp::GetModuleFileNameA. This is because of the
macros from windows.h, which happily traverse namespace borders. I don't know if this can pose
a problem, but it could give rise to surprises when linking.

As for progress, I covered CtrlLib and it's dependencies. Next: TheIDE .

Testing with Bombs example package, I can say that the 15% compilation time decrease remains
valid for MSC (I test by giving a rebuild all command), both for total time,and per package basis.
Nothing to get too excited over, but since it's a "free" gain, I don't see why I shouldn't be happy
about it.

Subject: Re: WinAPI UNICODE question
Posted by bytefield on Sun, 23 Nov 2008 17:46:32 GMT
View Forum Message <> Reply to Message

Is your work related to "cleaning up" the Upp from unwanted dependencies, functions conflict,
"old" not so good design, etc. or it is a derivation of Upp? If not, when your modifications will be
available in Upp sources?

Subject: Re: WinAPI UNICODE question
Posted by mirek on Sun, 23 Nov 2008 20:32:17 GMT
View Forum Message <> Reply to Message

Page 7 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19254#msg_19254
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19254
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19257#msg_19257
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19257
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=523
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19262#msg_19262
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19262
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19270#msg_19270
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19270
https://www.ultimatepp.org/forums/index.php

cbpporter wrote on Sun, 23 November 2008 11:39Well there is one small problem: some function
names get overridden with a different name. For example, Upp::GetModuleFileName becomes
Upp::GetModuleFileNameA. This is because of the macros from windows.h, which happily
traverse namespace borders. I don't know if this can pose a problem, but it could give rise to
surprises when linking.

Yes, I am aware about that. IMO, it is not really a problem.

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Mon, 24 Nov 2008 00:04:57 GMT
View Forum Message <> Reply to Message

bytefield wrote on Sun, 23 November 2008 19:46Is your work related to "cleaning up" the Upp
from unwanted dependencies, functions conflict, "old" not so good design, etc. or it is a derivation
of Upp? If not, when your modifications will be available in Upp sources?
It is related to exposing as little as possible as possible from the target platform API at an interface
level. It only allows platform specific code (right now just WinAPI, but later can be done for Linux
also, I think even easier) to not compile or be useful for client of U++ API. Also, I removed some
unwanted external headers. All WinAPI functions are hidden, and only some types are available,
but these types are available independent of platform. You can use a HWND under Linux, and
both under Linux and Windows it will still be completely useless for you. It will just be a pointer
type, without any way to use it in a platform dependent way (unless you go out of your way to cast
it to something evil, but like C++ in general, my approach protects you from accident, not from
intention). So this raises the question: how to deal with the parts of U++ that need Windows API.
Well I made Core.h platform independent and added a CorePS.h that must be included in platform
dependent compilation units. The number of compilation units that need platform specific code is
very small, thus the 15% compilation time decrease. Except the new header that is included, and
some small API differences that are applied here and there, the rest of the U++ code base
remains unmodified. I'm not expecting this to be used in the official release, but to get it to a shape
where 99% of it is identical to official U++, the rest of 1% is handled by auto merge, and the
generated binary from compilation is the same.

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Mon, 24 Nov 2008 00:06:27 GMT
View Forum Message <> Reply to Message

luzr wrote on Sun, 23 November 2008 22:32cbpporter wrote on Sun, 23 November 2008
11:39Well there is one small problem: some function names get overridden with a different name.
For example, Upp::GetModuleFileName becomes Upp::GetModuleFileNameA. This is because of
the macros from windows.h, which happily traverse namespace borders. I don't know if this can
pose a problem, but it could give rise to surprises when linking.

Page 8 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19278#msg_19278
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19278
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19279#msg_19279
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19279
https://www.ultimatepp.org/forums/index.php

Yes, I am aware about that. IMO, it is not really a problem.

Mirek

Can be solved with a simple undef and calling "A" version explicitly. This is what I used.

Subject: Re: WinAPI UNICODE question
Posted by mirek on Wed, 26 Nov 2008 18:41:44 GMT
View Forum Message <> Reply to Message

Quote:
Can be solved with a simple undef and calling "A" version explicitly. This is what I used.

Actually, a good idea - we might need that when A++ parses macros

Mirek

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Fri, 05 Dec 2008 04:02:37 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Sun, 23 November 2008 18:39 Next: TheIDE .

Done! I'm running it right now. I'll have to test it carefully to see if everything is OK. I had to make
a compromise for ide and ide\Debuggers, but these two packages are very high in the hierarchy
and pretty platform dependent, so I guess it's not that much of a compromise.

Now comes the fun part and I'll have to merge my local modifications with SVN updates so I can
keep up to date. I'm hopping for few conflicts .

Here is the list of macros that I found troublesome from windows.h:

#undef min
#undef max
#undef GetModuleFileName
#undef GetWindowsDirectory
#undef GetFileTitle
#undef DrawText
#undef LoadString
#undef DeleteFile
#undef GetTempFileName
#undef LoadLibrary

Page 9 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19327#msg_19327
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19327
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19466#msg_19466
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19466
https://www.ultimatepp.org/forums/index.php

#undef GetCurrentDirectory

DeleteFile and GetTempFile are interesting. By using the "A" variant, I'm not sure if you can delete
a file with Unicode chars. I'll have to check it out.

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Tue, 09 Dec 2008 08:41:46 GMT
View Forum Message <> Reply to Message

I am going to give now a concrete example with attached modified files. I've chosen Color.h and
Color.cpp to illustrate some points because they are so easy and universally used throughout my
modified files.

What I done here is added inline copies of the function GetRValue to RGB with different names
and used them. GetRValue and friends are declared as macros in windows.h and and as inline
functions under POSIX so it would seem that we are covered in regards to cross-platform
compatibility. Unfortunately, this is not the case.

The biggest problem is that you can not write code without having using namespace Upp
somewhere before. If I try to use Upp::GetRValue, it will compile and work fine under Linux, but
not under Windows. I havent't encountered this problem with exactlly this function, but I did with
other functions which I'm going to touch in later posts (I'm looking at GetTickCount especially).

Another problem is that under Linux, you can get the adress of such functions,while under
Windows the same code will not compile again.

This is why I'va chosen to introduce new names. If you don't like the solution, GetRValue and
friends could be undefed and defined as macros under all platforms and in Upp namespace, not
just under POSIX. But this could lead to name clashes if someone later includes windows.h again.

File Attachments
1) Core.zip, downloaded 429 times

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Wed, 10 Dec 2008 19:41:43 GMT
View Forum Message <> Reply to Message

I'm uploading here a first version. It is more of a proof of concept than anything else at the
moment. It is not as clean as I wanted it to be, because midway I decided that compatibility is
more important right now than completely clean code. Also, because of the 2MB maximum
attachment size, I could barely include enough to compile something like UWord with striped out
documentation. I need to upload to rapid share or something. I haven't tested all the packages,
but almost all will compile and work fine under Windows at least. Some of the ones that don't
compile don't compile under unmodified SVN also, so I guess it's not me.

Page 10 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19500#msg_19500
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19500
https://www.ultimatepp.org/forums/index.php?t=getfile&id=1511
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19519#msg_19519
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19519
https://www.ultimatepp.org/forums/index.php

Subject: Re: WinAPI UNICODE question
Posted by cbpporter on Thu, 11 Dec 2008 09:04:42 GMT
View Forum Message <> Reply to Message

I've uploaded the whole thing on RapidShare. Only 10 downloads are allowed. I'm going to
remove the attachment from previous message.

The packages that don't compile: Docedit, GLCtrl, ide/VectorDes, Ole/Ctrl, rw, TDraw and
VectorDes. Number of modified files: 150.

Page 11 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=3997&goto=19524#msg_19524
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19524
https://www.ultimatepp.org/forums/index.php

