
Subject: Draw::DrawImageOp optimization bug
Posted by Tom1 on Thu, 27 Nov 2008 12:52:30 GMT
View Forum Message <> Reply to Message

Hi,

There is a problem when printing large images. Disabling the "if((cx > 2000 || cy > 2000) ..."
-triggered image printing optimization in Draw.cpp / Draw::DrawImageOp(), makes the problem
disappear.

The optimized printout reveals narrow white uncovered gaps (both horizontal and vertical)
between rendered blocks:

This can be verified when printing images with a high resolution printer or just with "Microsoft XPS
Document Writer". The XPS document, when viewed with Microsoft XPS Viewer shows clearly
the problem.

Also, when printing to a color laser printer (Xerox Phaser 6200), the coloring of the printed image
becomes uneven along the optimized blocks. This also is fixed when printing without the
optimization.

// Tom

File Attachments
1) image_error.png, downloaded 1354 times

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 28 Nov 2008 07:56:17 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 27 November 2008 07:52Hi,

There is a problem when printing large images. Disabling the "if((cx > 2000 || cy > 2000) ..."
-triggered image printing optimization in Draw.cpp / Draw::DrawImageOp(), makes the problem
disappear.

The optimized printout reveals narrow white uncovered gaps (both horizontal and vertical)
between rendered blocks:

This can be verified when printing images with a high resolution printer or just with "Microsoft XPS
Document Writer". The XPS document, when viewed with Microsoft XPS Viewer shows clearly
the problem.

Page 1 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19334#msg_19334
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19334
https://www.ultimatepp.org/forums/index.php?t=getfile&id=1500
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19349#msg_19349
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19349
https://www.ultimatepp.org/forums/index.php

Also, when printing to a color laser printer (Xerox Phaser 6200), the coloring of the printed image
becomes uneven along the optimized blocks. This also is fixed when printing without the
optimization.

// Tom

Thanks. Looks like we need to work a bit on this.

BTW, can you upload the testing image (and maybe the whole testcase) somewhare?

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Fri, 28 Nov 2008 09:23:32 GMT
View Forum Message <> Reply to Message

I wrote a simple test case that can be used to visualize the problem easily when printing to e.g.
Microsoft XPS Document Writer.

#include <CtrlLib/CtrlLib.h>

using namespace Upp;

class Testcase2 : public TopWindow{
	
public:
	typedef Testcase2 CLASSNAME;
	
	Testcase2(){
		Sizeable();
		MinimizeBox();
		MaximizeBox();
		BackPaint();
	}

	void drawimage(Draw &draw){
		Size sz;
		if(draw.IsPrinter()) sz=draw.GetPagePixels();
		else sz=GetSize();
		
		ImageBuffer ib(sz.cx,sz.cy);
		for(int y=0;y<sz.cy;y++){
			for(int x=0;x<sz.cx;x++){
				ib[y][x]=(RGBA)Color((16*y/sz.cy)<<4,(16*y/sz.cy)<<4,(16*x/sz.cx)<<4);

Page 2 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19350#msg_19350
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19350
https://www.ultimatepp.org/forums/index.php

			}
		}
		
		Rect rect=draw.GetClip();
		draw.DrawRect(rect,Color(255,255,255));
		Image img(ib);
		draw.DrawImage(0,0,img);
		if(!draw.IsPrinter()){
			draw.DrawText(10,10,"Press 'P' to print...",StdFont(),Color(255,255,255));
			draw.DrawText(10,30,"(This really drains your ink/toner cartridge, so try e.g. Microsoft XPS
Document Writer.)",StdFont(),Color(255,255,255));
		}
	}
	
	void print(){
		PrinterJob *job=new PrinterJob();
		if(job){
			if(job->Execute()){
				Draw &draw=job->GetDraw();
				draw.StartPage();
				drawimage(draw);
				draw.EndPage();
			}
			delete job;
		}
	}
	
	virtual void Paint(Draw &draw){
		drawimage(draw);
	}
	
	bool Key(dword key, int count){
		switch(key){
			case K_P:
				print();
				return true;
		}
		return false;
	}

};

GUI_APP_MAIN
{
	Testcase2().Run();
}

Page 3 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by rylek on Fri, 28 Nov 2008 12:15:14 GMT
View Forum Message <> Reply to Message

Hi there!

The 2000 x 2000 block limitation is a problematic old hack I used long ago when I had trouble with
GDI processing larger areas at once. Some of it was W98-related and is probably long gone, but a
few years ago I encountered the same problem when printing a very large raster-based drawing
on an A0 cylinder plotter with not much memory where without piecewise upload the plotter
wouldn't print anything at all. Some expertise would evidently help here and the blit routine should
be if-ed properly perhaps based on some properties of the output device and/or OS version.

Regards

Tomas

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 28 Nov 2008 12:27:23 GMT
View Forum Message <> Reply to Message

rylek wrote on Fri, 28 November 2008 07:15Hi there!

The 2000 x 2000 block limitation is a problematic old hack I used long ago when I had trouble with
GDI processing larger areas at once.

Actually, I am afraid you are not up-to-date about this one...

This is not the "old Image code" (although it can fix the same problem as byproduct).

Current DrawImage really does something new, the RLE compression. Also, but splitting the
process to bands, it should help with memory consumption - e.g. imagine printing some
documentation from RichText, where screenshots are usually rescaled to much bigger size.
Banding pushes them in bands, means we do not need the memory for the "big" results.

And more, "RLE compression" (detecting uniform color blocks) has the potential to reduce the
memory footprint even in the printer.

Mirek

Page 4 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=24
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19352#msg_19352
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19352
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19353#msg_19353
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19353
https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 28 Nov 2008 12:29:52 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Fri, 28 November 2008 04:23
	void print(){
		PrinterJob *job=new PrinterJob();
		if(job){
			if(job->Execute()){
				Draw &draw=job->GetDraw();
				draw.StartPage();
				drawimage(draw);
				draw.EndPage();
			}
			delete job;
		}
	}

Off-topic: Why the 'new' here?

In U++, never use 'new' unless you have a VERY good reason to do so - either you are doing
some too low-level or you need 'naked' polymorphy. But as for polymorphy, you can also use
'encapsulated' form with One...

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Fri, 28 Nov 2008 12:54:37 GMT
View Forum Message <> Reply to Message

Still off-topic, but even more so: I started writing applications with C++ in 1988 and for years I
often ended up with stack overflow whenever I attempted to use local variables from my classes.
So, I learned my lesson and started to use pointers and new/delete instead. A lot of time has
passed along the way and this problem with local variables and stack overflows may well have
disappeared altogether, but I seem to be stuck with my old habits. Well, maybe I will learn over
the next decade or so...

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 28 Nov 2008 13:27:46 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Fri, 28 November 2008 07:54Still off-topic, but even more so: I started writing

Page 5 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19354#msg_19354
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19354
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19357#msg_19357
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19357
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19358#msg_19358
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19358
https://www.ultimatepp.org/forums/index.php

applications with C++ in 1988 and for years I often ended up with stack overflow whenever I
attempted to use local variables from my classes. So, I learned my lesson and started to use
pointers and new/delete instead. A lot of time has passed along the way and this problem with
local variables and stack overflows may well have disappeared altogether, but I seem to be stuck
with my old habits. Well, maybe I will learn over the next decade or so...

// Tom

I can understand that... However, those old habits do separate you from the main advantage of
C++/U++ - automated resource management...

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 28 Nov 2008 20:02:06 GMT
View Forum Message <> Reply to Message

Well, I have spent last 4 hours with this problem and I really do not know what to think....

See this:

#include <CtrlLib/CtrlLib.h>

using namespace Upp;

class Testcase2 : public TopWindow{
	
public:
	typedef Testcase2 CLASSNAME;
	
	Testcase2(){
		Sizeable();
		MinimizeBox();
		MaximizeBox();
		BackPaint();
	}
	
	Image MakeImage2(Size sz) const {
		ImageBuffer ib(sz.cx / 3, sz.cy / 3);
		Fill(ib, LtBlue(), ib.GetLength());
		const Color c[] = { LtBlue() };
		for(int y = 0; y < ib.GetWidth(); y++) {
			for(int x = 0; x < ib.GetHeight(); x++)
				ib[x][y] = c[2 * (x > ib.GetHeight() / 2) + (y > ib.GetWidth() / 2)];
		}
		return ib;

Page 6 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19362#msg_19362
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19362
https://www.ultimatepp.org/forums/index.php

	}

	Image MakeImage(Size sz) const {
		ImageDraw iw(sz / 3);
		iw.DrawRect(sz / 3, Blue);
		iw.DrawText(0, 0, "O", Roman(sz.cy / 3).Italic(), Red());
		return iw;
	}
	
	Image MakeImage1(Size sz) const {
		ImageBuffer ib(sz);
		for(int y=0;y<sz.cy;y++){
			for(int x=0;x<sz.cx;x++){
				ib[y][x]=(RGBA)Color((16*y/sz.cy)<<4,(16*y/sz.cy)<<4,(16*x/sz.cx)<<4);
			}
		}
		return ib;
	}

	void print(){
	}
	
	virtual void Paint(Draw &w){
		Size sz = GetSize();
		w.DrawRect(GetSize(), White);
		w.DrawImage(0, 0, MakeImage(GetSize()));
		w.DrawText(10,500,"Press 'P' to print image, 'R' to print rectangle test, 'C' to another test...");
		w.DrawText(10,530,"(This really drains your ink/toner cartridge, so try e.g. Microsoft XPS
Document Writer.)");
	}
	
	bool Key(dword key, int count){
		PrinterJob job;
		switch(key){
			case K_P:
				if(job.Execute()){
					Draw &draw = job;
					draw.StartPage();
					draw.DrawImage(0, 0, MakeImage(draw.GetPagePixels()));
					draw.EndPage();
				}
				return true;
			case K_R:
				if(job.Execute()){
					Draw &draw = job;
					draw.StartPage();
					bool flag = false;
					for(int y = 0; y < 100; y++)

Page 7 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

						for(int x = 0; x < 100; x++) {
							draw.DrawRect(16 * x, 16 * y, 16, 16, flag ? Blue : Red);
							if((Random() & 31) == 0)
								flag = !flag;
						}
					draw.EndPage();
				}
				return true;
			case K_C:
				if(job.Execute()){
					Draw &draw = job;
					draw.StartPage();
					for(int y = 0; y < 100; y++)
						for(int x = 0; x < 100; x++)
							draw.DrawRect(16 * x, 16 * y, 16, 16, Blue);
					draw.EndPage();
				}
				return true;
		}
		return false;
	}

};

GUI_APP_MAIN
{
	Testcase2().Run();
}

Now interesting things happen when you press R or C.

These try to emulate the compression issue. When you do R, you have those line artifacts, but C
seems without the issue - and only thing that has changed is the color.

Is not it really weird? (Note that it is not even related to Image).

It can also be seen with P... The areas that are "full line" are OK.

Well, I have also tried to mitigate the issue by "overpainting" rectangle (adding to height/width),
but interestigly that seems to have produced other issues.

OK, enough for today, next tomorrow. We really need this working BTW.

Mirek

Page 8 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Sat, 29 Nov 2008 11:54:28 GMT
View Forum Message <> Reply to Message

luzr wrote on Fri, 28 November 2008 15:02
Well, I have also tried to mitigate the issue by "overpainting" rectangle (adding to height/width),
but interestigly that seems to have produced other issues.

- just try to extend values in DrawRect

							draw.DrawRect(16 * x, 16 * y, 19, 19, flag ? Blue : Red);

Frankly, I am in dead end. I believe that the whole issue is just a driver bug, and I do not see any
reasonable workaround.

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Mon, 01 Dec 2008 10:25:49 GMT
View Forum Message <> Reply to Message

I looked into this problem from another aspect: I shrinked the rectangle by one pixel from each
edge. This proved that in the RLE code the edges of the rectangles and sub-images are exactly
accurate. What happens in XPS, is that the edges show sub-pixel level inaccuracies that are
internal to the XPS. This can be very accurately visualized in XPS Viewer using 5000% zooming.
So, it is not U++ fault. XPS Viewer also internally softens the rasters when zooming in, and then
another set of problems arise with the rectangles and sub-images: They do not quite fit together
with soft and sharp edges side-by-side.

On the other hand, the unrelated problem with uneven colors in Xerox Phaser 6200, might have
something to do with color spaces being different for images and vector elements causing weird
color effects. I have no proof of this, but still, the printout gets corrected when this optimization is
commented out.

I suggest an option flag -- maybe even enabled by default -- for skipping the optimization for large
images.

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 11:12:31 GMT
View Forum Message <> Reply to Message

Page 9 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19368#msg_19368
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19368
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19401#msg_19401
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19401
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19402#msg_19402
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19402
https://www.ultimatepp.org/forums/index.php

Tom1 wrote on Mon, 01 December 2008 05:25I looked into this problem from another aspect: I
shrinked the rectangle by one pixel from each edge. This proved that in the RLE code the edges
of the rectangles and sub-images are exactly accurate. What happens in XPS, is that the edges
show sub-pixel level inaccuracies that are internal to the XPS. This can be very accurately
visualized in XPS Viewer using 5000% zooming. So, it is not U++ fault. XPS Viewer also
internally softens the rasters when zooming in, and then another set of problems arise with the
rectangles and sub-images: They do not quite fit together with soft and sharp edges side-by-side.

OK, that would mean we should attempt for "overpaint" solution and ignore those weird artifacts?

Quote:
On the other hand, the unrelated problem with uneven colors in Xerox Phaser 6200, might have
something to do with color spaces being different for images and vector elements causing weird
color effects. I have no proof of this, but still, the printout gets corrected when this optimization is
commented out.

Ooops.

Quote:
I suggest an option flag -- maybe even enabled by default -- for skipping the optimization for large
images.

Well, that is the last resort solution...

BTW, at least, we should not be afraid to optimize white areas, correct?

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 11:41:17 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 01 December 2008 05:25
On the other hand, the unrelated problem with uneven colors in Xerox Phaser 6200, might have
something to do with color spaces being different for images and vector elements causing weird
color effects. I have no proof of this, but still, the printout gets corrected when this optimization is
commented out.

BTW, it is interesting that those rects are being painted using PatBlt (basically, a pixel-pushing
api).

Mirek

Page 10 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19403#msg_19403
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19403
https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Mon, 01 Dec 2008 11:49:22 GMT
View Forum Message <> Reply to Message

After seeing all this happening with basically simple rasters and rectangles, I'm not quite sure
anymore what really will happen if even the white areas get optimized... How do they cover the
stuff drawn behind those areas to be covered with white?

Of course, if drawing the optimized image starts with a single white DrawRectOp() covering the
entire image rect, and then continues by adding the non-white sub-images on top of that should
work... but only for OPAQUE pictures.

UPDATE:

Quote:
BTW, it is interesting that those rects are being painted using PatBlt (basically, a pixel-pushing
api).

Correct, but: PatBlt uses current brush just like Rectangle and other vector functions with fill
capability, so the color mapping mechanism must be the same.

BTW: Is PatBlt more efficient that Rectangle?

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 11:57:27 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 01 December 2008 06:49After seeing all this happening with basically
simple rasters and rectangles, I'm not quite sure anymore what really will happen if even the white
areas get optimized... How do they cover the stuff drawn behind those areas to be covered with
white?

Of course, if drawing the optimized image starts with a single white DrawRectOp() covering the
entire image rect, and then continues by adding the non-white sub-images on top of that should
work... but only for OPAQUE pictures.

// Tom

Just a sidenote: I must see stubborn desperately trying to keep this optimization, but:

- some of my existing applications would have troubles without it, this is essential to e.g. printing
.jpges directly to the printer, without the need of rescaling them to 500MB.

Page 11 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19404#msg_19404
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19404
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19405#msg_19405
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19405
https://www.ultimatepp.org/forums/index.php

- this concept plays an important role in the future, when we will need to print svg pictures. I
expect that this will work very well with most bussines oriented graphivs.

I now believe that we can handle artifacts issue, at least on printers.

So the problem now is the color mismatch..

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 12:12:42 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 01 December 2008 06:49
Of course, if drawing the optimized image starts with a single white DrawRectOp() covering the
entire image rect, and then continues by adding the non-white sub-images on top of that should
work... but only for OPAQUE pictures.

I would not hope too much that any existing printer driver can really handle non-OPAQUE picture,
meanwhile, it should be simple to avoid optimization for them too...

Quote:
BTW, it is interesting that those rects are being painted using PatBlt (basically, a pixel-pushing
api).

Correct, but: PatBlt uses current brush just like Rectangle and other vector functions with fill
capability, so the color mapping mechanism must be the same.
[/quote]

Yes, likely yes.

Quote:
BTW: Is PatBlt more efficient that Rectangle?

I do not believe so. But AFAIK, they are rounded to physical resolution differently. In fact, that is
most likely the source of our problem.

Mirek

Subject: Re: Draw::DrawImageOp optimization bug

Page 12 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19406#msg_19406
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19406
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Mon, 01 Dec 2008 12:14:56 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 01 December 2008 05:25
On the other hand, the unrelated problem with uneven colors in Xerox Phaser 6200, might have
something to do with color spaces being different for images and vector elements causing weird
color effects. I have no proof of this, but still, the printout gets corrected when this optimization is
commented out.

Something simple to try: Create uniform color Image (e.g. using CreateImage(Size sz, Color color)
then print it alongside the Rect with the same color.

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Mon, 01 Dec 2008 12:50:54 GMT
View Forum Message <> Reply to Message

luzr wrote on Mon, 01 December 2008 13:57
Just a sidenote: I must see stubborn desperately trying to keep this optimization, but:

- some of my existing applications would have troubles without it, this is essential to e.g. printing
.jpges directly to the printer, without the need of rescaling them to 500MB.

- this concept plays an important role in the future, when we will need to print svg pictures. I
expect that this will work very well with most bussines oriented graphivs.

I now believe that we can handle artifacts issue, at least on printers.

So the problem now is the color mismatch..

Mirek

No need to apologize, you're the chief -- not me.

I faced the same 'oversized printout' problem with images and went around it using
::StretchDIBits() GDI API. This effectively shrinked the amount of data transferred to the printer. I
guess there are very few printers really capable of printing 24 or 32 bit colors at the full resolution
so the colors visible to the eye are really sums of many adjacent pixels in both horizontal and
vertical directions. Therefore, I use lower resolution for color and gray scale images to be
transferred to the printer and print only the vector graphics at the full resolution on top of that.

I'm really dependent on this for many of my applications, but I have been able to do it without
modifications U++ itself, so I have not been pressuring you to take it in. If it was to be integrated
to U++ Draw::, I would prefer an option flag for natively stretched images, instead of U++ based

Page 13 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19407#msg_19407
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19407
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19408#msg_19408
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19408
https://www.ultimatepp.org/forums/index.php

pre-stretching when expanding of images was needed.

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 13:25:29 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Mon, 01 December 2008 07:50
I faced the same 'oversized printout' problem with images and went around it using
::StretchDIBits() GDI API. This effectively shrinked the amount of data transferred to the printer.

Those JPEGs are 600dpi scans of A4 pages...

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Mon, 01 Dec 2008 13:37:05 GMT
View Forum Message <> Reply to Message

I made a simple test drawing two adjacent 100x100 dots squares filled with the same
Color(180,180,0). The first one was an Image and the second was a Rectangle.

For Windows Vista with standard printer driver: I can confirm that the colors do not match on
Xerox Phaser 6200. Not even close. The image is much lighter than the rectangle. I tried with
ICM (Image color management) enabled and disabled, and with other options: No change.

For Windows XP it first appeared that nothing is different compared to Vista, but after changing a
parameter (Color Correction: Press Match = Commercial Press), I got the colors finally to match.
(This parameter can not be set for Windows Vista though, so no luck there.)

To sum it up, the color space may indeed be different for raster and vector entities within the
same device context. Not a very nice feature from the optimization point of view.

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Mon, 01 Dec 2008 13:52:12 GMT
View Forum Message <> Reply to Message

Page 14 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19409#msg_19409
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19409
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19410#msg_19410
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19410
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19411#msg_19411
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19411
https://www.ultimatepp.org/forums/index.php

Tom1 wrote on Mon, 01 December 2008 08:37
To sum it up, the color space may indeed be different for raster and vector entities within the
same device context. Not a very nice feature from the optimization point of view.

Indeed

There are still "rat in the corner" means to overcome it.

The simple one comes to mind is to reuse small(er) uniform color Image to draw rectangles
instead. E.g. something like 16x16 block.

Either tile it or stretch it.

Damn it. And I thought that the issue is solved, years ago

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Tue, 02 Dec 2008 18:15:49 GMT
View Forum Message <> Reply to Message

Update:

I have performed the first test on my brand new Epson SX100 - and the result is perfect, without
any changes to the code

Anyway, I plan to do this:

- print in printer resolution, increased to be <1000dpi (that should solve the "division lines"
problem)

- only optimize out white areas (non-matching color problem)

I now think that I will add to Draw something like:

Pointf BeginNativeResolution();
void EndNativeResolution();

with Pointf containing constants to convert from dots to native pixels.

Mirek

Page 15 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19416#msg_19416
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19416
https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Tue, 02 Dec 2008 20:16:21 GMT
View Forum Message <> Reply to Message

Hi Mirek,

I'm not quite sure what you mean by "increased to be <1000dpi". Anyway, I think those changes
will increase usability of both old printers and the yet to be published ones. I hope you make the
pixels square (horizontal dpi = vertical dpi) even in the native resolution mode when the native
pixels are not square. Otherwise, I suggest a flag for requesting square pixels in the call to
BeginNativeResolution(bool useSquarePixelsFlag).

I will test it and report the results as soon as I get your solution from the SVN.

(Off the record: I did some testing today to print the RLE rectangles with StretchDIBits() and the
results were pretty promising, but not quite perfect. 1x1 pixel source raster does not work
correctly. It needs to be at least 1x2 for some reason. There were also still slight coverage
problems with XPS when zoomed out -- although not nearly as bad as with rectangles.)

Thanks and regards,

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Tue, 02 Dec 2008 20:46:24 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Tue, 02 December 2008 15:16Hi Mirek,

I'm not quite sure what you mean by "increased to be <1000dpi". Anyway, I think those changes
will increase usability of both old printers and the yet to be published ones. I hope you make the
pixels square (horizontal dpi = vertical dpi) even in the native resolution mode when the native
pixels are not square.

Uh, it would not be native mode then?!

Anyway, more information: For our "corpus delicti", Epson, the resolutions returned from GDI are
either 360dpi or 720dpi (1440/5xxx is just marketing bluff).

Means I will simply go MM_TEXT mode as native.

Mirek

Page 16 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19419#msg_19419
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19419
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19420#msg_19420
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19420
https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Wed, 03 Dec 2008 11:14:50 GMT
View Forum Message <> Reply to Message

luzr wrote on Tue, 02 December 2008 15:46Tom1 wrote on Tue, 02 December 2008 15:16Hi
Mirek,

I'm not quite sure what you mean by "increased to be <1000dpi". Anyway, I think those changes
will increase usability of both old printers and the yet to be published ones. I hope you make the
pixels square (horizontal dpi = vertical dpi) even in the native resolution mode when the native
pixels are not square.

Uh, it would not be native mode then?!

Anyway, more information: For our "corpus delicti", Epson, the resolutions returned from GDI are
either 360dpi or 720dpi (1440/5xxx is just marketing bluff).

Means I will simply go MM_TEXT mode as native.

Mirek

OK, done. Seems OK so far (althought in fact, there is no visible difference on my Epson).

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Wed, 03 Dec 2008 14:03:31 GMT
View Forum Message <> Reply to Message

Hi Mirek,

The printing seems to work now correctly for both XPS and also the older Epson printer where we
had the scaling and other problems. Further on, the Xerox Phaser 6200 colors are even now
within the image. Good work!

One thing popped up when reading the code. The BeginNative() call is followed by a conditional
return without corresponding EndNative(). This may cause trouble in some cases. Maybe it
should be written the other way around:

...
LTIMING("DrawImageOp");
if(IsNull(src))
	return;
BeginNative();
Native(x, y);

Page 17 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19429#msg_19429
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19429
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19433#msg_19433
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19433
https://www.ultimatepp.org/forums/index.php

Native(cx, cy);
...

Thanks and best regards,

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Wed, 03 Dec 2008 14:21:59 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Wed, 03 December 2008 09:03Hi Mirek,

The printing seems to work now correctly for both XPS and also the older Epson printer where we
had the scaling and other problems. Further on, the Xerox Phaser 6200 colors are even now
within the image. Good work!

One thing popped up when reading the code. The BeginNative() call is followed by a conditional
return without corresponding EndNative(). This may cause trouble in some cases. Maybe it
should be written the other way around:

...
LTIMING("DrawImageOp");
if(IsNull(src))
	return;
BeginNative();
Native(x, y);
Native(cx, cy);
...

Thanks and best regards,

Tom

Thanks!

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Wed, 03 Dec 2008 14:36:20 GMT

Page 18 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19434#msg_19434
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19434
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

Mirek,

One more thing: GetPagePixels returns the size as 600 dpi dots now even in the native mode. It
would be very helpful if it returned the pixels according to the current addressing mode, i.e. native
or dots mode.

Update: Also, would it be possible to return the currently effective DPI by the GetPixelsPerInch()
in the same way? This would simplify using the same code for both printing and screen view.

Update 2: The code required for these:

Draw.h, Add/Change:

Size pageDots;

Size GetPagePixels() const { return native?pagePixels:pageDots; }
Size GetPixelsPerInch() const { return native?nativeDpi:inchPixels; }

DrawWin32.cpp, Change:

void Draw::LoadCaps() {
...
pageDots = pagePixels = GetSizeCaps(HORZRES, VERTRES);
...
}

...

void PrintDraw::InitPrinter()
{
...
pageDots.cx = 600 * pagePixels.cx / nativeDpi.cx;
pageDots.cy = 600 * pagePixels.cy / nativeDpi.cy;
...
}

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Wed, 03 Dec 2008 16:11:25 GMT
View Forum Message <> Reply to Message

Page 19 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19435#msg_19435
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19435
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19436#msg_19436
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19436
https://www.ultimatepp.org/forums/index.php

Hi,

I ran some more tests on the native mode and discovered that the following should be changed in
order to get correct scaling for the images in the native mode too:

1. There should not be switching to native mode and back in the Draw.cpp/Draw::DrawImageOp().
 Also, there should not be any Native() translations for the coordinates.

2. The same goes probably for the DrawData.cpp/Draw::DrawDataOp(). No switching to native
and back, and no coordinate translations.

Please remove:

BeginNative();
Native(x, y);
Native(cx, cy);
..
EndNative();

from both of the above functions.

The printing works correctly without these switchings in both native and dots mode. (By selecting
the native mode, the user indicates that they wish to use the native coordinate space for all
coordinates and create the content with that fact in mind.)

Best regards,

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 09:19:22 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Wed, 03 December 2008 09:36Mirek,

One more thing: GetPagePixels returns the size as 600 dpi dots now even in the native mode. It
would be very helpful if it returned the pixels according to the current addressing mode, i.e. native
or dots mode.

Update: Also, would it be possible to return the currently effective DPI by the GetPixelsPerInch()
in the same way? This would simplify using the same code for both printing and screen view.

Well, at the time, it was intentional design. You have GetNativeDpi there.

I have to think whether the proposed change is desirable.

Page 20 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19442#msg_19442
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19442
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 09:22:05 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Wed, 03 December 2008 11:11Hi,

I ran some more tests on the native mode and discovered that the following should be changed in
order to get correct scaling for the images in the native mode too:

1. There should not be switching to native mode and back in the Draw.cpp/Draw::DrawImageOp().
 Also, there should not be any Native() translations for the coordinates.

2. The same goes probably for the DrawData.cpp/Draw::DrawDataOp(). No switching to native
and back, and no coordinate translations.

Uh oh. DrawImage was the reason we have started all this stuff anyway.

Why do you suggest to throw all of that now?

Note that it is at least supposed to fix those line artifacts problem in the first place.

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Thu, 04 Dec 2008 10:07:28 GMT
View Forum Message <> Reply to Message

Quote:
Uh oh. DrawImage was the reason we have started all this stuff anyway.

Why do you suggest to throw all of that now?

Note that it is at least supposed to fix those line artifacts problem in the first place.

I do not wish to throw away the BeginNative/EndNative/Native functions. Definitely not. They are
really the key to use the native resolution in printing. That's great and they should stay there.

The problem is that DrawImageOp and DrawDataOp use the BeginNative/EndNative pair and the
Native translations as if the coordinates input would be dots in all cases. This makes the
coordinate space different for vector objects and the image objects.

Page 21 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19443#msg_19443
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19443
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19444#msg_19444
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19444
https://www.ultimatepp.org/forums/index.php

Based on your code, I assume, you wanted to put the image to the printer on the native resolution.
 What happened was that if native mode was already on, the Native() calls did a second
re-mapping of coordinates causing error in position and scale.

Basically switching the mode and the Native() calls would have been OK, if a check of the native
recursion level was done and the Native() calls were conditional (if(native==1)) after switching.
Anyway, the correct mapping of pixels to coordinate space was already achieved with the change
that skipped ::SetDIBitsToDevice() call and used some other 'bitmap thing'. So I concluded that
those calls are not needed in DrawImageOp and DrawDataOp at all. I removed the calls from
there, tested it and it worked. Both in native and in dots mode.

Now, if you do these changes I suggest, I guess the situation will be that we should have a Draw::
for printing that by default is mapped with 600 dpi points and works OK with all printers we have
tested so far. Additionally, if BeginNative is called, it will completely switch to printers native dpi
mode and provides a consistent printing area at the printers native resolution instead of the 600
dpi.

The changes to GetPagePixels and GetPixelsPerInch support this. They will provide the correct
values for the drawing area also after switching to native mode. Those changes will not break
dots mode in any way.

Regards,

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 10:36:49 GMT
View Forum Message <> Reply to Message

Yes, thinking about the issue, I have came to the same conclusion.

The key is to do Native conversion only if BeginNative was called for the first time.

Interesting question is whether we should add such logic directly into "Native" conversion
methods.

Something like:

return native == 1 && inchPixels != nativeDpi ? iscale(x, nativeDpi.cx, 600) : x;

What do you think? Maybe it is a little bit too 'automatic', but I do not really see any flaws (yet

The logic of Native methods then could be described as "what was your value before BeginNative
now gets converted to the value you need inside BeginNative-EndNative block".

Mirek

Page 22 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19445#msg_19445
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19445
https://www.ultimatepp.org/forums/index.php

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Thu, 04 Dec 2008 11:09:04 GMT
View Forum Message <> Reply to Message

I think I would not automate it. It will just require more thinking when expanding/debugging the
code later -- especially if there are multiple levels of calls involved.

I think for a user of Draw::, there is no need to call the Native() functions at all. They will most
probably either use dots by default and not care about any native stuff OR they will call
BeginNative() once in the beginning of the page and then use that coordinate system for all of the
page content. The Native() calls will probably be left for the uses inside the Draw:: itself. (Unless,
of course, someone is doing something quite extraordinary that I can't imagine right now.) I think
we should assume the user of Draw:: to know which mode he selected previously and behave
accordingly.

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 11:36:31 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 04 December 2008 06:09I think I would not automate it. It will just require
more thinking when expanding/debugging the code later -- especially if there are multiple levels of
calls involved.

I think for a user of Draw::, there is no need to call the Native() functions at all. They will most
probably either use dots by default and not care about any native stuff OR they will call
BeginNative() once in the beginning of the page and then use that coordinate system for all of the
page content. The Native() calls will probably be left for the uses inside the Draw:: itself. (Unless,
of course, someone is doing something quite extraordinary that I can't imagine right now.) I think
we should assume the user of Draw:: to know which mode he selected previously and behave
accordingly.

// Tom

Well, that would mean test in DrawImage / DrawData, right?

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Thu, 04 Dec 2008 12:09:23 GMT
View Forum Message <> Reply to Message

Page 23 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19446#msg_19446
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19446
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19449#msg_19449
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19449
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19450#msg_19450
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19450
https://www.ultimatepp.org/forums/index.php

Yes, this would mean the 'if(native==1)' testing in DrawImage / DrawData.

I must emphasize that switching to native in DrawImage/DrawData is not required at all unless
you wish to put back the SetSurface (::SetDIBitsToDevice) based image printing to
Image::Data::Paint().

// Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 14:53:04 GMT
View Forum Message <> Reply to Message

Tom1 wrote on Thu, 04 December 2008 07:09Yes, this would mean the 'if(native==1)' testing in
DrawImage / DrawData.

I must emphasize that switching to native in DrawImage/DrawData is not required at all unless
you wish to put back the SetSurface (::SetDIBitsToDevice) based image printing to
Image::Data::Paint().

// Tom

I believe we still might need it to overcome horizontal line artifacts.

And the quality should be now better, as Image is rescaled just once, directly to printer resolution.

Anyway, DrawImage/Data fixed.

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Thu, 04 Dec 2008 15:07:10 GMT
View Forum Message <> Reply to Message

luzr wrote on Thu, 04 December 2008 16:53
I believe we still might need it to overcome horizontal line artifacts.
And the quality should be now better, as Image is rescaled just once, directly to printer resolution.

Anyway, DrawImage/Data fixed.

Mirek

Doing image rescaling just once in dots mode is a very good reason indeed for your approach, I
agree.

Page 24 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19453#msg_19453
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19453
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19455#msg_19455
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19455
https://www.ultimatepp.org/forums/index.php

What about GetPagePixels and GetPixelsPerInch updates? Can you throw them in? I assume
nobody currently using them would expect to get different values from them than what the
currently active coordinate space uses.

Thanks,

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Thu, 04 Dec 2008 16:46:52 GMT
View Forum Message <> Reply to Message

Done.

I hope our little printing crysis is thus over

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Fri, 05 Dec 2008 10:05:41 GMT
View Forum Message <> Reply to Message

Mirek,

Thank you for the latest fixes. I have tested with all my real printers with success using both dots
and native mode. Now, I will also involve my client with the Epson printer to verify the results on
that particular hardware. I would not expect any trouble on that, as the preview is OK.

With Microsoft XPS Document Writer + Viewer, there is still horizontal lines if the image gets even
partly optimized. Over-painting the image segments does not help. (This can be seen if the
Testcase image (O) is drawn with red on white instead of red on blue.) I assume this happens
because the XPS Viewer smooths the image and the intensity at the edge of each colored image
segment is lower than the pixel color due to smoothing. Therefore, each new stripe paints a
narrow line with lighter color.

I suppose, the RLE optimization of images is just impossible with XPS but luckily appears to work
well for real printers after the 'optimize-white-only' -change. I guess, there is just the 'disable RLE
optimization' -flag left as an option to survive printing to XPS.

Overall, the changes have improved the printing sub-system compatibility and printing quality.
Especially the native mode has been an extremely welcome feature.

Thanks and regards,

Page 25 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19456#msg_19456
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19456
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19470#msg_19470
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19470
https://www.ultimatepp.org/forums/index.php

Tom

Subject: Re: Draw::DrawImageOp optimization bug
Posted by mirek on Fri, 05 Dec 2008 10:20:11 GMT
View Forum Message <> Reply to Message

Well, regarding XPS, we have came to conclusion it is in fact XPS bug. I plan to ignore this
problem for now. AFAIK, not many are using XPS anyway.

(It would be however interesting to check how things behave with PDF

Thanks for all of your work. Testing with all these printers is a huge contribution of its own

Mirek

Subject: Re: Draw::DrawImageOp optimization bug
Posted by Tom1 on Fri, 05 Dec 2008 11:13:37 GMT
View Forum Message <> Reply to Message

I agree on dropping XPS for now.

Thank you and have a nice weekend,

Tom

Page 26 of 26 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19471#msg_19471
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19471
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=335
https://www.ultimatepp.org/forums/index.php?t=rview&th=4023&goto=19472#msg_19472
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19472
https://www.ultimatepp.org/forums/index.php

