Subject: Quick bi-array
Posted by Mindtraveller on Wed, 21 Jan 2009 13:38:36 GMT

View Forum Message <> Reply to Message

| need a deque-like container where | may reserve space for a number of elements, and the main
requirement is that removing element doesn't make actual memory deallocation, as well as
adding element by reference doesn't actually make any memory allocation or constructor call. |
want add/delete mechanism to be as quick as possible: all the actions are to be done within
reserved set of elements. Adding is just calling operator= to internal reserved container element,
removing is just marking it unused. Something like that.

Is there any appropriate container in U++?

Looking into sources, it looks like BiVector and BiArray use new/delete and don't match
requirements.

P.S. Sorry, it's really a U++ Core topic.

Subject: Re: Quick bi-array
Posted by mirek on Wed, 21 Jan 2009 13:53:55 GMT

View Forum Message <> Reply to Message

Mindtraveller wrote on Wed, 21 January 2009 08:38I need a deque-like container where | may
reserve space for a number of elements, and the main requirement is that removing element
doesn’'t make actual memory deallocation, as well as adding element by reference doesn't
actually make any memory allocation or constructor call. | want add/delete mechanism to be as
quick as possible: all the actions are to be done within reserved set of elements. Adding is just
calling operator= to internal reserved container element, removing is just marking it unused.
Something like that.

Is there any appropriate container in U++?

Looking into sources, it looks like BiVector and BiArray use new/delete and don't match
requirements.

BiVector would call only single new at Reserve, then nothing else.
BiArray behaves as Array, of course (each element is newed/deleted).

It is not easy to decipher your requirements, but if you mean by 'reference’ what | understand, |
guess something like

BiVector<Element *>

should be fine and would never call new/delete after Reserve, as long as you do not exceed the
reserved size.

Would you be more specific, | would try to find more detailed answer.

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4123&goto=19795#msg_19795
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19795
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4123&goto=19796#msg_19796
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19796
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Quick bi-array
Posted by Mindtraveller on Wed, 21 Jan 2009 13:59:47 GMT

View Forum Message <> Reply to Message

Thank you very much for quick answering. It looks like you have successfully deciphered my
requirements and BiVector<Element *> is really what | need for now.

Subject: Re: Quick bi-array
Posted by Mindtraveller on Wed, 21 Jan 2009 17:55:36 GMT

View Forum Message <> Reply to Message

I've tried to test BiVector<Element *> and it looks like it was not the thing | wanted.
What did | want? | wanted a deque-like container which is extremely fast on adding and removing
it's records. This means no allocation/deallocation is accepted (just calling Element::operator=
only). The idea of such a container is as quick as possible container access while program runs.
Contrary, possible allocation/deallocation on program start/finish is acceptable.
So the thing | wanted is such code
struct Element
{
Element() :a(0) {Cout()<<"*";}
Element(int _a) :a(_a) {Cout()<<"+";
~Element() {Cout()<<".";}
Element & operator= (const Element&op) {a=op.a; Cout()<<"="; return *this;}
int a;
3
QuickDeque<Element> vec;
static Element elm(0);
for (int i=0;i<10;++i)
{
elm.a=i;
vec.AddTail(elm);
}

should give output:

without any constructors/desctructors after program started.

And it looks like | managed to do something like it (just a second quick try after BiVector test):
template<class T> class QuickDeque

{

public:

QuickDeque(int cap = 10) :capacity(0), data(NULL), start(0), count(0) {ASSERT(cap > 0);
AddAlloc(cap);}

~QuickDeque() {DeAlloc(); }

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4123&goto=19797#msg_19797
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19797
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4123&goto=19798#msg_19798
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19798
https://www.ultimatepp.org/forums/index.php

void AddTail(const T&t) {if (count >= capacity) AddAlloc(count); int offs=start+count; if (offs >=
capacity) offs-=capacity; *((T *) &data[offs*sizeof(T)]) = t; ++count;}

void DropHead(T &t) {ASSERT(count > 0); t = *((T *) &data[start*sizeof(T)]); if (++start ==
capacity) start=0; --count;}

T &operator[] (int n) {ASSERT(n>=0 && n<count); int offs=start+n; if (offs >= capacity)
offs-=capacity; return *((T *) &data[offs*sizeof(T)]);}

int GetCount() {return count;}

private:

void AddAlloc(int capacityAdd)

{

ASSERT(capacityAdd >= 0);
int capacityNew = capacity+capacityAdd;
byte *newData = new byte[capacityNew*sizeof(T)];
memcpy(&newData[0], &data[start*sizeof(T)], (capacity-start)*sizeof(T));
memcpy(&newData[(capacity-start)*sizeof(T)], &data[0], start*sizeof(T));
for (int i=count; i<capacityNew; ++i)
new (&newData[i*sizeof(T)]) T();

if (data)

delete[] data;

start =0;

data = newData;
capacity = capacityNew;

}

void DeAlloc()
{
for (int i=0; i<capacity; ++i)
((T *) &datali*sizeof(T)])->T::~T();
if (data)
delete[] data;
}

int capacity;

byte *data;

int start,
count;

|8

| wonder if it works with polymorphic elements...

Subject: Re: Quick bi-array
Posted by mirek on Wed, 21 Jan 2009 21:03:55 GMT

View Forum Message <> Reply to Message

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4123&goto=19799#msg_19799
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19799
https://www.ultimatepp.org/forums/index.php

Mindtraveller wrote on Wed, 21 January 2009 12:55

| wonder if it works with polymorphic elements...

Nope.

Anyway, maybe you can look at BiArray::

T& AddHead(T *newt) { bv.AddHead(newt); return *newt; }

T& AddTail(T *newt) { bv.AddTail(newt); return *newt; }

template <class TT> TT& CreateHead() {TT *q = new TT; bv.AddHead(q); return *q; }
template <class TT> TT& CreateTail() {TT *q = new TT; bv.AddTail(q); return *q; }

T *DetachHead() {T *q = (T*) bv.Head(); bv.DropHead(); return q; }

T *DetachTail() {T *q = (T*) bv.Tail(); bv.DropTail(); return g; }

might provide the kind of operations you need.

Note that basically, polymorphy requires new... You can move that "outside", but it is hard to avoid
it in generic case, because sizeof(T) varies.

Polypmorhy in general also excludes operator=.

Mirek

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

