Subject: Funny way how NOT to speedup sorting of small arrays
Posted by mirek on Sun, 01 Feb 2009 10:30:52 GMT

View Forum Message <> Reply to Message

Well, | got a nice idea that does not work, but | want to share anyway.

One of critical issues in polygon rasterizer (which | could not resist to work on in the end) is the
scanline x positions sorting.

Usually the number of elements to sort is quite low. So | was thinking about optimizing selection
sort:

template <class I, class Less>
inline | SelectMin2(l ptr, const Less& less)

{
return less(ptr[0], ptr[1]) ? ptr : ptr + 1;

}

template <class I, class Less>
inline | SelectMin3(l ptr, const Less& less)

{

I | = SelectMin2(ptr, less);
I h =ptr + 2;

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin4(l ptr, const Less& less)
{

I | = SelectMin2(ptr, less);

| h = SelectMin2(ptr + 2, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>
inline | SelectMin5(l ptr, const Less& less)

{

I | = SelectMin4(ptr, less);
| h = ptr + 4,

return less(*l, *h) ? | : h;

}

template <class I, class Less>

inline | SelectMin6(l ptr, const Less& less)
{

I | = SelectMin4(ptr, less);

| h = SelectMin2(ptr + 4, less);

Page 1 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=19909#msg_19909
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19909
https://www.ultimatepp.org/forums/index.php

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin7(l ptr, const Less& less)
{

I | = SelectMin4(ptr, less);

I h = SelectMin3(ptr + 4, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin8(l ptr, const Less& less)
{

I | = SelectMin4(ptr, less);

I h = SelectMin4(ptr + 4, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin9(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

| h =ptr + 8;

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin10(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin2(ptr + 8, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin11(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin3(ptr + 8, less);

return less(*l, *h) ? | : h;

}

template <class I, class Less>

inline | SelectMin12(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin4(ptr + 8, less);

Page 2 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin13(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin5(ptr + 8, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin14(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin6(ptr + 8, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin15(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin7(ptr + 8, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

inline | SelectMin16(l ptr, const Less& less)
{

I | = SelectMin8(ptr, less);

I h = SelectMin8(ptr + 8, less);

return less(*l, *h) ? 1 : h;

}

template <class I, class Less>

void FwSort(l begin, int len, const Less& less)

{

switch(len) {

case 16: IterSwap(begin, SelectMin16(begin, less)); begin++;
case 15: IterSwap(begin, SelectMin15(begin, less)); begin++;
case 14: IterSwap(begin, SelectMin14(begin, less)); begin++;
case 13: lterSwap(begin, SelectMin13(begin, less)); begin++;
case 12: lterSwap(begin, SelectMin12(begin, less)); begin++;
case 11: IterSwap(begin, SelectMin11(begin, less)); begin++;
case 10: IterSwap(begin, SelectMin10(begin, less)); begin++;
case 9: lterSwap(begin, SelectMin9(begin, less)); begin++;
case 8: lterSwap(begin, SelectMin8(begin, less)); begin++;

Page 3 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

case 7: IterSwap(begin, SelectMin7(begin, less)); begin++;
case 6: IterSwap(begin, SelectMin6(begin, less)); begin++;
case 5: IterSwap(begin, SelectMin5(begin, less)); begin++;
case 4: lterSwap(begin, SelectMin4(begin, less)); begin++;
case 3: lterSwap(begin, SelectMin3(begin, less)); begin++;
case 2: IterSwap(begin, SelectMin2(begin, less));

}

}

The final result: it works, but it is not faster than normal loop based sort:) Maybe if | could make
C++ to emit CMOV, it would be better...

Mirek

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by Mindtraveller on Sun, 01 Feb 2009 15:59:48 GMT

View Forum Message <> Reply to Message

luzr wrote on Sun, 01 February 2009 13:300ne of critical issues in polygon rasterizer (which |
could not resist to work on in the end) Mirek, so you started working on image<->polygon
converter as polygonized Da Vinci's Mona Liza you've shown some time ago?

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by mirek on Sun, 01 Feb 2009 17:17:12 GMT

View Forum Message <> Reply to Message

Mindtraveller wrote on Sun, 01 February 2009 10:59luzr wrote on Sun, 01 February 2009
13:300ne of critical issues in polygon rasterizer (which | could not resist to work on in the end)
Mirek, so you started working on image<->polygon converter as polygonized Da Vinci's Mona
Liza you've shown some time ago?

Well, | rather got tired of AGG bugs, design problems and limitations and (re)started new 2D sw
renderer ("Painter 2.0") from scratch.

But heavily mining AGG sources - but | feel no shame, as AGG heavily mined others - it is actually
funny to trace the code back - the bread and butter of AGG, antialiased polygon renderer, is
based on Freetype code, which in turn is based on LibArt code.

That said, | am not sure whether the polygon rasterizing algorithm was invented by Raph Levien
of LibArt, but if it was, he is really really smart guy.

Mirek

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=19911#msg_19911
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19911
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=19912#msg_19912
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19912
https://www.ultimatepp.org/forums/index.php

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by mr_ped on Sun, 01 Feb 2009 19:13:03 GMT

View Forum Message <> Reply to Message

| think with 10+ elements already quicksort can pay off. A well implemented quicksort will not hurt
even with 2-3 elements that much.

Then the question is also, what do you sort, and how much the data can be pre-sorted already, in
such case you can either avoid sort at all, or bubble sort can yield best results if every element is
already close to it's sorted order position.

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by mirek on Sun, 01 Feb 2009 22:06:22 GMT

View Forum Message <> Reply to Message

mr_ped wrote on Sun, 01 February 2009 14:13I think with 10+ elements already quicksort can pay
off.

In U++, we maintain 16 as threshold.

Quote:

A well implemented quicksort will not hurt even with 2-3 elements that much.

There is only so much you can do with plain quicksort. All real quicksort algorithms switch to
selection sort or insert sort when subsequence goes under certain threshold. It makes it quite
faster.

Thus, if | could invent some faster variant for up to 16 elements, we would have a huge win...

Mirek

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by piotr5 on Mon, 11 May 2009 13:03:11 GMT

View Forum Message <> Reply to Message

| really am no expert in this sorting-thing, but | guess the real advantage of the sort-algorithm in
this thread is that one can easily paralellize it. as far as | remember mmx had some possibility to
sort aribatry bytes with this method in paralell: each 64-bit register can hold 8 bytes, and so
comparing 2 registers will sort up to 16 bytes in a few assembler-mmx-commands. naturally larger
values require more registers. of course with only 16 values starting a seperate thread (on some
other processor or multicore) is quite an overhead, the same with switching from float to mmx on
my amd. but if the overhead has already been taken of...

Page 5 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=19916#msg_19916
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19916
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=19917#msg_19917
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19917
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=21280#msg_21280
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21280
https://www.ultimatepp.org/forums/index.php

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by tojocky on Mon, 24 Aug 2009 15:29:22 GMT

View Forum Message <> Reply to Message

luzr wrote on Mon, 02 February 2009 00:06mr_ped wrote on Sun, 01 February 2009 14:13I think
with 10+ elements already quicksort can pay off.

In U++, we maintain 16 as threshold.

Quote:

A well implemented quicksort will not hurt even with 2-3 elements that much.

There is only so much you can do with plain quicksort. All real quicksort algorithms switch to
selection sort or insert sort when subsequence goes under certain threshold. It makes it quite
faster.

Thus, if | could invent some faster variant for up to 16 elements, we would have a huge win...

Mirek

Founded on Wikipedia that one of the fasted sorting algorithm of small number of elements is
Shell sort.

Here is another interesting article of sorting.
lon Lupascu (tojocky)

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by piotr5 on Sat, 29 Aug 2009 13:32:09 GMT

View Forum Message <> Reply to Message

I'm not sure how this would look like:

16 elements means 4x4 table. sorting each column iteratively means splitting it up into 2x2 tables
and combining them into a 4-row column. however, with 9 elements to sort one could make a 3x3
table and sort each column with 3-4 comparisons instead of 1 comparison and a whole insert-sort
of the 3 elements along with the whole overhead of it. also, after sorting the 4 columns, what
next? should it now be 2x8 or 3x6 or immediately insertion-sort? according to the article it must be
insertion-sort, but maybe in this particular case 2x8 would be better? and what to start with? when
is 3x6 better than 4x4? what about 5x47?

sorry for the rant, | would be interested in some input though.
meanwhile | will do some testing...

Page 6 of 7 ---- Generated from L+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=22880#msg_22880
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22880
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=22929#msg_22929
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22929
https://www.ultimatepp.org/forums/index.php

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by piotr5 on Sun, 30 Aug 2009 23:38:24 GMT

View Forum Message <> Reply to Message

a small update since | wont get the time to make a full test:

with my particular test-data | can only confirm that nothing can drastically outperform a simple
sort-loop. (i.e. exchange the minimum with the first element, and continue without that first
element.) only through full speed-optimization the divide-and-conquer search for a minimum can
really keep up with the loop. especially shell-search isn't much faster than even bubble-sort (all
that with sorting only 16 integers)! however, with a trick | managed to find a sorting-algorithm
which is about twice as fast: insert-sort. insert-sort in combination with binary search and a
mem-copy for the insertion is faster (with my particular test-data) than any of them. it isn't much,
but it's noticable. unfortunately memcpy() isn't fair since it doesn't take care of any
pick-beaurocracy -- but it certainly is faster than any piece-by-piece swapping or shifting.

in my previous message | said something which is wrong:
shell-sort is done by applying insert-sort, and not

as | said by recursively applying the same method.
recursive shell-sort would only re-do what has already
been done in the previous step!

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by mirek on Wed, 02 Sep 2009 15:42:33 GMT

View Forum Message <> Reply to Message

piotr5 wrote on Sun, 30 August 2009 19:38

insert-sort in combination with binary search and a mem-copy for the insertion is faster (with my
particular test-data) than any of them. it isn't much, but it's noticable. unfortunately memcpy() isn't
fair since it doesn't take care of any pick-beaurocracy -- but it certainly is faster than any
piece-by-piece swapping or shifting.

Well, but it IS compatible with Moveable.

Actually, this is an interesting point w.r.t. to moving some of algorithms to containers. Obviously, if
Sort would be Vector's method, it would be OK for it to use memmove...

Mirek

Subject: Re: Funny way how NOT to speedup sorting of small arrays
Posted by Mindtraveller on Wed, 02 Sep 2009 18:33:05 GMT

View Forum Message <> Reply to Message

Also it would be easier to use and learn.

M~ ™7 ~& = i ot m ol E v o~ Tl 0 e s somm

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=22937#msg_22937
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22937
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=22955#msg_22955
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22955
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4150&goto=22959#msg_22959
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22959
https://www.ultimatepp.org/forums/index.php

