
Subject: StaticMutex/ONCELOCK question
Posted by Novo on Tue, 03 Feb 2009 05:28:01 GMT
View Forum Message <> Reply to Message

I couldn't understand completely several things with StaticMutex and ONCELOCK.

StaticMutex will never call destructor of a contained Mutex object. Is this meant to be?

#define ONCELOCK \
for(static volatile bool o_b_; !ReadWithBarrier(o_b_);) \
	for(static StaticMutex o_ss_; !o_b_;) \
		for(Mutex::Lock o_ss_lock__(o_ss_); !o_b_; BarrierWrite(o_b_, true))

How the above code actually works?

TIA

Subject: Re: StaticMutex/ONCELOCK question
Posted by mirek on Tue, 03 Feb 2009 06:41:36 GMT
View Forum Message <> Reply to Message

Novo wrote on Tue, 03 February 2009 00:28I couldn't understand completely several things with
StaticMutex and ONCELOCK.

StaticMutex will never call destructor of a contained Mutex object. Is this meant to be?

Yes. OS will clean that up when program exits.

Quote:

#define ONCELOCK \
for(static volatile bool o_b_; !ReadWithBarrier(o_b_);) \
	for(static StaticMutex o_ss_; !o_b_;) \
		for(Mutex::Lock o_ss_lock__(o_ss_); !o_b_; BarrierWrite(o_b_, true))

How the above code actually works?

TIA

Do not get fooled by 3 'for' loops - these are just syntactic sugar to make ONCELOCK work on C
statements and blocks - they in fact simulate the outer block

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=4154&goto=19927#msg_19927
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19927
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4154&goto=19928#msg_19928
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19928
https://www.ultimatepp.org/forums/index.php

{
 static volatile bool o_b_;
 if(!ReadWithBarrier(o_b_)) {
 static StaticMutex mutex;
 mutex.Enter();
 {
 do_the_initialization - the statement 'body'
 BarrierWrite(o_b_);
 }
 }
}

The purpose is to avoid locking mutex in subsequent passes of ONCELOCK - you need the
barrier code to do that.

Note that both compilers we use optimize the for loops away.

Mirek

Subject: Re: StaticMutex/ONCELOCK question
Posted by Novo on Tue, 03 Feb 2009 19:28:05 GMT
View Forum Message <> Reply to Message

luzr wrote on Tue, 03 February 2009 01:41
Do not get fooled by 3 'for' loops - these are just syntactic sugar to make ONCELOCK work on C
statements and blocks - they in fact simulate the outer block

Thanks. I understand the idea with loops. I'm using similar technique to handle transactions
myself.

What I do not understand is how uninitialized o_b_ works.

{
 static volatile bool o_b_;
 if(!ReadWithBarrier(o_b_)) {
 ...
 }
}

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=4154&goto=19940#msg_19940
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19940
https://www.ultimatepp.org/forums/index.php

Subject: Re: StaticMutex/ONCELOCK question
Posted by Novo on Sun, 08 Feb 2009 02:09:19 GMT
View Forum Message <> Reply to Message

Novo wrote on Tue, 03 February 2009 14:28
What I do not understand is how uninitialized o_b_ works.

{
 static volatile bool o_b_;
 if(!ReadWithBarrier(o_b_)) {
 ...
 }
}

I finally figured out that myself. ANSI-compatible compiler initializes all static POD data with
zeroes before a very first function call. So, this static variable is always initialized in a thread-safe
way.

There is always something to learn about C.

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=4154&goto=19984#msg_19984
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19984
https://www.ultimatepp.org/forums/index.php

