
Subject: The problem with 'Null'
Posted by gridem on Thu, 19 Mar 2009 07:04:25 GMT
View Forum Message <> Reply to Message

I found that Upp uses the following practice: instead of creating already prepared object it creates
the object with default constructor and than fill the necessary members in later calls. But using
such approach the programmer should distinguish between init and non init state. One of the
possible solution: apply 'Null' to the fields and than check by using IsNull.

The simple types (int, long etc) and Value already have such posibility. String also can use this
but using another functionality:
String::GetVoid() return 'super' empty string that may be treated as 'Null'. The problem is that
IsNull(String()) and IsNull(String::GetVoid()) return both true. This may be workarounded but it's
not a good solution. But for the Vector<T> the workaround is more complex: the programmer
should use One<Vector<T> >. The problem may occur in situation when function should return
result or error. In the following example:
String LoadFile(...)
the solution exist: return String::GetVoid() on error. But what I can do when I must return Vector:
Vector<Templates> GetTemplateList()
Empty list denotes the there are no templates. But how can I return error without using terrible
One<Vector<T> >?

Subject: Re: The problem with 'Null'
Posted by gridem on Thu, 19 Mar 2009 07:42:02 GMT
View Forum Message <> Reply to Message

I found a dirty trick:
template<typename T>
struct PickedVector : Vector<T>
{
	PickedVector()
	{
		Vector<T>() = *this;
	}
};

template<typename T>
const Vector<T>& VectorNull()
{
	return Single<PickedVector<T> >();
}

template<typename T>
bool IsNull(const Vector<T>& v)
{
	return v.IsPicked();
}

Page 1 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=649
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20446#msg_20446
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20446
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=649
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20449#msg_20449
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20449
https://www.ultimatepp.org/forums/index.php

Cout() << "Is Null: " << IsNull(Vector<int>()) << EOL;
Cout() << "Is Null: " << IsNull(VectorNull<int>()) << EOL;

output:
Is Null: false
Is Null: true
and picked state may be treated as Null.

Subject: Re: The problem with 'Null'
Posted by cbpporter on Thu, 19 Mar 2009 07:45:23 GMT
View Forum Message <> Reply to Message

gridem wrote on Thu, 19 March 2009 09:04But using such approach the programmer should
distinguish between init and non init state. One of the possible solution: apply 'Null' to the fields
and than check by using IsNull.
I think that with U++ design there is no such thing as init and non-init state. Pretty much all
classes are in "init" state after the call of a constructor, even the default one. Such objects are
initialized and ready to use, but generally hold no extra information. A String() will have zero
length, a Vector() will have zero elements, a Button() will have no picture, text and other
properties that diverge from default, but otherwise is ready to be inserted into a parent.

So basically the default constructor creates object in an already prepared state. I think the reason
that we use default constructor in this way rather than constructor with parameters to set all the
meaningful data is largely related to the intrinsic construction rules of C++. Since we don't put
everything on the heap, the objects construction can't be deferred to the allocation moment and is
constructed at the runtime point equivalent to the declaration. At this point you often don't have all
the information required to call a constructor with parameters.

There are of course exceptions. Things like Size and Point will not be initialized by default
construction and can result in bugs if the user is not aware of this fact. Here denoting the absence
of an initialization would be useful, but I think these classes are supposed to be lightweight and
this is why they are not initialized. Adding unfertilized state detection would make them more
heavy weight and less efficient. Having a vector of 10 points would initialize all of them to default,
and in most cases, you would reinitialize them in code again. By leaving them uninitialized you
only get the meaningful initialization, but you risk bugs if you forget it.

As for the One<Vector <T> > solution, I think is not a very good one. Not only do you have to test
if the Vector is not Null and loose the guarantee that Vector is initialized, but you also increase the
level of indirection. Such tricks might look like something good, but my experience tells me that if
you are going to write programs with hundreds of thousands of line of code and use less straight
forward solutions, you'll end up causing more problems than you solve.

Wouldn't a call to IsEmpty or something equivalent on you return value solve the problem? Maybe
I'm not understanding exactly what you are trying to achieve. Maybe if you can give a real world
example where U++ initialization scheme is not working out and you need to determine

Page 2 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20450#msg_20450
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20450
https://www.ultimatepp.org/forums/index.php

initialization status, then I could offer a better solution.

Subject: Re: The problem with 'Null'
Posted by mirek on Thu, 19 Mar 2009 08:16:34 GMT
View Forum Message <> Reply to Message

gridem wrote on Thu, 19 March 2009 03:04I found that Upp uses the following practice: instead of
creating already prepared object it creates the object with default constructor and than fill the
necessary members in later calls. But using such approach the programmer should distinguish
between init and non init state. One of the possible solution: apply 'Null' to the fields and than
check by using IsNull.

The simple types (int, long etc) and Value already have such posibility. String also can use this
but using another functionality:
String::GetVoid() return 'super' empty string that may be treated as 'Null'. The problem is that
IsNull(String()) and IsNull(String::GetVoid()) return both true. This may be workarounded but it's
not a good solution. But for the Vector<T> the workaround is more complex: the programmer
should use One<Vector<T> >. The problem may occur in situation when function should return
result or error. In the following example:
String LoadFile(...)
the solution exist: return String::GetVoid() on error. But what I can do when I must return Vector:
Vector<Templates> GetTemplateList()
Empty list denotes the there are no templates. But how can I return error without using terrible
One<Vector<T> >?

Null is for "full values".

Note that String::GetVoid is deliberately defined "Null" because e.g. for LoadFile, most code can
safely ignore the error as long as they get "Null" file.

As for your vector example, I would simply use

bool GetTemplateList(Vector<Templates>& r);

Mirek

Subject: Re: The problem with 'Null'
Posted by mirek on Thu, 19 Mar 2009 08:20:30 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Thu, 19 March 2009 03:45
There are of course exceptions. Things like Size and Point will not be initialized by default

Page 3 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20451#msg_20451
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20451
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20452#msg_20452
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20452
https://www.ultimatepp.org/forums/index.php

construction and can result in bugs if the user is not aware of this fact.

Well, that depends on definition of "initialized"

Is normal scoped

{
 int x;

initialized or not? I believe in sense it is - all resources required for it are allocated and it is ready
to be used. Of course, contract does not define any particular initial value for it

(I agree this is mostly just pointless word-play).

Mirek

Subject: Re: The problem with 'Null'
Posted by gridem on Fri, 20 Mar 2009 07:16:50 GMT
View Forum Message <> Reply to Message

Thank you very much for detailed answers! It's very useful for me to understanding intrinsics of
Upp.

But let's me to understand my opinion. I think that Null approach is not narrow-minded but generic.
It uses for Value, it uses for many simple types.

Because I use a lot the templates, overloaded functions and code generation I have to utilize the
generic methods for every types that I want to use. And I use Null as some kind of parameter
state that I can treat as:
1. Init/Non init
2. Error on function return.
3. Default values to call the function to distinguish it from nondefault values:
void some_fun(int a, int b = Null, bool c = Null, ...)
{
 if (b == Null)
 b = some_complex_calculated_value(a);
 ...
}

etc

So to see this approach for String's and Vector's I have to do workaround. May be I should not
use the generics but another mechanism?

Page 4 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=649
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20467#msg_20467
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20467
https://www.ultimatepp.org/forums/index.php

Subject: Re: The problem with 'Null'
Posted by mirek on Fri, 20 Mar 2009 08:52:06 GMT
View Forum Message <> Reply to Message

gridem wrote on Fri, 20 March 2009 03:16Thank you very much for detailed answers! It's very
useful for me to understanding intrinsics of Upp.

But let's me to understand my opinion. I think that Null approach is not narrow-minded but generic.
It uses for Value, it uses for many simple types.

Because I use a lot the templates, overloaded functions and code generation I have to utilize the
generic methods for every types that I want to use. And I use Null as some kind of parameter
state that I can treat as:
1. Init/Non init
2. Error on function return.
3. Default values to call the function to distinguish it from nondefault values:
void some_fun(int a, int b = Null, bool c = Null, ...)
{
 if (b == Null)
 b = some_complex_calculated_value(a);
 ...
}

etc

Two notes:

You cannot really define Null for bool, as it has only 2 values..

It is more correct to use "IsNull" instead of "== Null".

Quote:So to see this approach for String's and Vector's I have to do workaround. May be I should
not use the generics but another mechanism?

Well, I can see where you are heading, but I do not really like that path

My only apology at this moment is that U++ is "practice driven", and in the whole history (which
now spans abuot 10 years), we never missing IsNull for containers...

BTW, as you have noticed, there is the small issue with String Null - empty string is considered
Null.

I agree this is sort of controversial decision. Indeed, a couple of years ago, we identified it as
mistake and tried

IsNull(String()) == false
IsNull(String(Null)) == true
String(Null) == String()

Page 5 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20469#msg_20469
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20469
https://www.ultimatepp.org/forums/index.php

variant. Well, what happened is that in practice, this was found to be rather unfortunate. I guess
the primary problem is that it is very convenient and natural, when working with databases and
GUI, that all empty String gui fields are inserted as Nulls. With above, you would need to have
additional GUI buttons to say whether the field is empty or whether it is null.

Similar issues can be found across the code. That is why we went back to

IsNull(String()) == true

As a sidenote, this equivalence was originally taken from Oracle.

Mirek

Subject: Re: The problem with 'Null'
Posted by gridem on Sun, 22 Mar 2009 08:15:57 GMT
View Forum Message <> Reply to Message

luzr wrote on Fri, 20 March 2009 11:52

Two notes:

You cannot really define Null for bool, as it has only 2 values..

It is more correct to use "IsNull" instead of "== Null".

Oh, my mistake: IsNull of course instead of == Null.

luzr wrote on Fri, 20 March 2009 11:52

Well, I can see where you are heading, but I do not really like that path

My only apology at this moment is that U++ is "practice driven", and in the whole history (which
now spans abuot 10 years), we never missing IsNull for containers...

BTW, as you have noticed, there is the small issue with String Null - empty string is considered
Null.

I agree this is sort of controversial decision. Indeed, a couple of years ago, we identified it as
mistake and tried

IsNull(String()) == false
IsNull(String(Null)) == true
String(Null) == String()

Page 6 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=649
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20524#msg_20524
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20524
https://www.ultimatepp.org/forums/index.php

variant. Well, what happened is that in practice, this was found to be rather unfortunate. I guess
the primary problem is that it is very convenient and natural, when working with databases and
GUI, that all empty String gui fields are inserted as Nulls. With above, you would need to have
additional GUI buttons to say whether the field is empty or whether it is null.

Similar issues can be found across the code. That is why we went back to

IsNull(String()) == true

As a sidenote, this equivalence was originally taken from Oracle.

Mirek

Thank you for your explanations. I caught the main idea. So for SQL programming it's possible to
introduce 'local IsNull':

template<typename T>
bool IsNullSql(const T& t)
{
 return IsNull(t);
}

bool IsNullSql(const String& s)
{
 return s.IsEmpty();
}

Subject: Re: The problem with 'Null'
Posted by mirek on Mon, 23 Mar 2009 22:55:21 GMT
View Forum Message <> Reply to Message

Quote:
Thank you for your explanations. I caught the main idea. So for SQL programming it's possible to
introduce 'local IsNull':

template<typename T>
bool IsNullSql(const T& t)
{
 return IsNull(t);
}

bool IsNullSql(const String& s)
{

Page 7 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20571#msg_20571
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20571
https://www.ultimatepp.org/forums/index.php

 return s.IsEmpty();
}

But it really is not only about SQL. I agree that it is a little bit controversial, we know it, but the
convention is really quite practical.

Mirek

Subject: Re: The problem with 'Null'
Posted by gridem on Tue, 24 Mar 2009 07:41:35 GMT
View Forum Message <> Reply to Message

luzr wrote on Tue, 24 March 2009 01:55

But it really is not only about SQL. I agree that it is a little bit controversial, we know it, but the
convention is really quite practical.

Mirek

I see. I think that I will use simple workaround for IsNull. At release mode the template inline
functions should not reduce perfomance at all.

Subject: Re: The problem with 'Null'
Posted by mirek on Tue, 24 Mar 2009 10:04:02 GMT
View Forum Message <> Reply to Message

gridem wrote on Tue, 24 March 2009 03:41luzr wrote on Tue, 24 March 2009 01:55

But it really is not only about SQL. I agree that it is a little bit controversial, we know it, but the
convention is really quite practical.

Mirek

I see. I think that I will use simple workaround for IsNull. At release mode the template inline
functions should not reduce perfomance at all.

IMO, you might find that in most cases, you will not need it.. (just as we did

Mirek

Page 8 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=649
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20574#msg_20574
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20574
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4248&goto=20577#msg_20577
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20577
https://www.ultimatepp.org/forums/index.php

