
Subject: More Unicode questions
Posted by cbpporter on Thu, 21 May 2009 11:52:58 GMT
View Forum Message <> Reply to Message

With my never ending quest of screwing around with encodings and Unicode I thought I'd try an
experiment and clean up some small parts that deal with such issues, thus both making it easier
to eventually move to a full Unicode system and introduce a NOASCII flag (since I can't put off the
adoption of Vista and especially 7 forever) and making some part of my <windows.h>-less fork
more easy to maintain, since that is the version I use during development.

So I started with:

bool FileDelete(const char *filename)
{
#if defined(PLATFORM_WIN32)
 if(IsWinNT())
 return !!UnicodeWin32().DeleteFileW(ToSystemCharsetW(filename));
 else
 return !!DeleteFile(ToSystemCharset(filename));
#elif defined(PLATFORM_POSIX)
 return !unlink(ToSystemCharset(filename));
#else
 #error
#endif//PLATFORM
}
as a nice point to adapt. It calls Win API to delete a file, but before it converts the name to the
system encoding.

But I'm having some problems understanding what is happening, especially with
ToSystemCharset:

#ifdef PLATFORM_WIN32
String ToSystemCharset(const String& src)
{
 WString s = src.ToWString();
 int l = s.GetLength() * 5;
 StringBuffer b(l);
 int q = WideCharToMultiByte(CP_ACP, 0, (const WCHAR *)~s, s.GetLength(), b, l, NULL,
NULL);
 if(q <= 0)
 return src;
 b.SetCount(q);
 return b;
}

So basically in pre Unicode Windows you have two system wide code pages: OEM for consoles
and ANSI for GUI. This tells the system which encoding to use with 8-bit strings.

Page 1 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21453#msg_21453
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21453
https://www.ultimatepp.org/forums/index.php

So let's say a have a filename F which need to be passed to DeleteFile. It is in a given encoding,
and since on the first line of ToSystemCharset it is converted to a wide string using the default
encoding, it must be also in the default encoding or the conversion won't make any sense. On pre
Unicode Windows I'm guessing that default encoding is the system wide ANSI code page, and on
Unicode Windows it is either Utf-8, or more likely the system wide encoding for non Unicode
applications, which plays the same role as on pre Unicode systems. So we have the filename F
encoded in encoding C. This is converted to a wide char string, which I'm guessing is Utf16. Then
this wide string is converted with WideCharToMultiByte to the ANSI system code page. So
basically you're converting F from encoding C to encoding C.

The only situation this makes sense it if the default encoding for strings is changed to something
different than the system wide. I'm sorry if a misunderstood this.

And a separate idea: wouldn't it make sense if all 8bit strings were Utf-8 internally? Even on
Windows 98 you could still convert them to the system encoding in the few cases where Windows
API is called, basically the same idea and approach that is used right now. The only disadvantage
would be that some national Latin characters would be 2 bytes long. On the other hand, as helpful
as constant length 1 byte chars are, perpetuating the legacy encoding system in U++ internals is
not necessary the best idea.

So basically what impact would there be if all read string would be converted to Utf8 using the
system code page and stored that way, and converted back to their encoding when calling Win98
API and to Utf16 when calling NT API? I know that this pretty much is happening right now, but
with my proposal having a String with different non Utf8 encoding would become impossible.
Sure, one could manually convert it to a desired encoding, but the default and what all U++
function would accept would be Utf8 (and Utf16 for wide strings).

I'm just trowing ideas around. The only part that counts is that I need to identify and tweak
functions like FileDelete so that they are compilable for either ASCII/Unicode mode or just
Unicode mode. FileDelete could become something like:

bool FileDelete(const char *filename)
{
#if defined(PLATFORM_WIN32)
#if defined(flagNOASCII)
	return !!DeleteFileW(ToSystemCharsetW(filename));
#else
 if(IsWinNT())
 return !!UnicodeWin32().DeleteFileW(ToSystemCharsetW(filename));
 else
 return !!DeleteFile(ToSystemCharset(filename));
#endif
#elif defined(PLATFORM_POSIX)
 return !unlink(ToSystemCharset(filename));
#else
 #error
#endif//PLATFORM

Page 2 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

}
I could go through every such function and do the necessary modifications. Also such binaries
compiled with NOASCII flag would still run on Win98 where the MS Unicode Compatibility layer is
installed (unicows.dll I believe it is called).

Also there are some function that call Win API and do not do the necessary code page
transformation. IMO this is a bug.

Subject: Re: More Unicode questions
Posted by mirek on Thu, 21 May 2009 14:46:49 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Thu, 21 May 2009 07:52
The only situation this makes sense it if the default encoding for strings is changed to something
different than the system wide. I'm sorry if a misunderstood this.

Exactly. Obvious example is an application in Win98 that is internally Utf-8...

Quote:
And a separate idea: wouldn't it make sense if all 8bit strings were Utf-8 internally?

It would. In fact, I think there is even the recommendation that application should prefer Utf-8 as
internal encoding.

Anyway, there are legacy applications that are not utf-8 and that we need to support... And it really
is not very complicated to add support for non-Utf8 internal encoding - you need
ToSystemCharset[W] no matter what, all you need to do is to have some global default charset
variable (SetDefaultCharset) and test
it in ToSystemCharset[W].

Mirek

Subject: Re: More Unicode questions
Posted by cbpporter on Fri, 22 May 2009 10:56:41 GMT
View Forum Message <> Reply to Message

I started investigating this problem because of the Vista Unicode input bug in ANSI applications:
other post.

But I can no longer reproduce this bug. It can be one of the following things:
1. It was fixed in U++. The definition of an Unicode/ANSI application is a little bit vague, since you
can mix and match W/A version. Probably using CreateWindowW and related versions would

Page 3 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21460#msg_21460
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21460
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21483#msg_21483
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21483
https://www.ultimatepp.org/forums/index.php

make the bug disappear. Did something get fixed in this part? I can see than CreateWindowA and
W are used arbitrarily in U++ sources.
2. They fixed the bug: 936060. It seems to be included in SP1.
3. I'm on a different machine.

I created a test Core with a USEASCII flag, but if this bug is no longer an issues, I don't think it is
worth the trouble.

On the other hand, there are still hundreds of places where incorrect ANSI version is used rather
then having version selected at runtime. I could fix Core at least so that it always check for correct
version.

And I also found a lot of places where Windows API is used instead of equivalent U++ methods,
like DeleteFile instead of FileDelete.

Subject: Re: More Unicode questions
Posted by cbpporter on Mon, 25 May 2009 10:49:55 GMT
View Forum Message <> Reply to Message

I started my hunting down of invalid uses of ANSI API on Unicode Windows.

I started with the part that gets the environment variables, namely AppInitEnvironment__. This
uses ANSI versions, so even through my environment variables are kept by windows in Unicode,
any non Latin characters would be lost in U++ applications. Following the normal procedure, I
would test with IsWinNT and duplicate the code, but this time using wchar and W version of the
API. Simple enough in theory.

Unfortunately I have bitten of more than I can chew. It seems that even GetEnvironmentStringsW
isn't capable of returning Unicode strings. Even worse, result vary a lot depending on system
locale, but even a string entered with characters from that locale won't be returned correctly, with
'?' characters replacing non Latin ones, but not all of them. I have tried all other Win API functions
to retrieve the variables, and the result is the same.

There is only one place where the values are correct: the Windows registry. I've written a test
version that in my tests retrieves correctly environment variables with all possible of characters
used.

If anybody has time and patience for a short experiment, then please try to create a environment
variable with some national characters, or any Unicode character and see if the following code
retrieves the correct values:

WString GetWinRegStringW(const wchar *value, const wchar *path, HKEY base_key) {
	HKEY key = 0;
	if(RegOpenKeyExW(base_key, path, 0, KEY_READ, &key) != ERROR_SUCCESS)
		return WString::GetVoid();
	dword type, data;

Page 4 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21535#msg_21535
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21535
https://www.ultimatepp.org/forums/index.php

	if(RegQueryValueExW(key, value, 0, &type, NULL, &data) != ERROR_SUCCESS)
	{
		RegCloseKey(key);
		return WString::GetVoid();
	}
	WStringBuffer raw_data(data);
	if(RegQueryValueExW(key, value, 0, 0, (byte *)~raw_data, &data) != ERROR_SUCCESS)
	{
		RegCloseKey(key);
		return WString::GetVoid();
	}
	if(data > 0 && (type == REG_SZ || type == REG_EXPAND_SZ))
		data -= 2;
	raw_data.SetLength(data / 2);
	RegCloseKey(key);
	return raw_data;
}

void Win32GetEnvVars()
{
#ifndef PLATFORM_WINCE
	//FileOut f("c:\\test.log");
	if (IsWin2K()) {
		wchar *env = GetEnvironmentStringsW();
		for(wchar *ptr = env; *ptr; ptr++)
		{
			const wchar *b = ptr;
			if(*ptr)
				ptr++;
			while(*ptr && *ptr != '=')
				ptr++;
			WString varname(b, ptr);
			
			if(*ptr)
				ptr++;
			b = ptr;
			while(*ptr)
				ptr++;
			WString value = WString(b, ptr);
			
			WString newval = GetWinRegStringW(varname,
L"SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Environment",
HKEY_LOCAL_MACHINE);
			if (!newval.IsVoid())
				value = newval;
			
			newval = GetWinRegStringW(varname, L"Environment", HKEY_CURRENT_USER);
			if (!newval.IsVoid())

Page 5 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

				value = newval;
			
			/*WString temp = (varname + "=" + value);
			WString nl = L"\r\n";
			f.PutW(temp, temp.GetCount());
			f.PutW(nl, 2);*/
						
			coreEnvPtr__().GetAdd(ToUpper(varname).ToString()) = value.ToString();
		}
		FreeEnvironmentStringsW(env);
	}
	else {
		char *env = GetEnvironmentStringsA();
		for(char *ptr = env; *ptr; ptr++)
		{
			const char *b = ptr;
			if(*ptr)
				ptr++;
			while(*ptr && *ptr != '=')
				ptr++;
			String varname(b, ptr);
			
			if(*ptr)
				ptr++;
			b = ptr;
			while(*ptr)
				ptr++;
			coreEnvPtr__().GetAdd(ToUpper(varname)) = FromSystemCharset(String(b, ptr));
		}
		FreeEnvironmentStringsA(env);
	}
	//f.Close();
#endif
}

void AppInitEnvironment__() {
	Win32GetEnvVars();
	CommonInit();
}

The code replaces AppInitEnvironment__ in Core/App.cpp.

Thank you!

Subject: Re: More Unicode questions
Posted by cbpporter on Mon, 25 May 2009 12:49:05 GMT

Page 6 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

And more fixes. Tested under XP/Vista. Don't have 95/98.

String GetComputerName()
{
#if defined(PLATFORM_WIN32)
	if (IsWinNT()) {
		wchar temp[256];
		*temp = 0;
		dword w = 255;
		::GetComputerNameW(temp, &w);
		return WString(temp).ToString();
	}
	else
	{
		char temp[256];
		*temp = 0;
		dword w = 255;
		::GetComputerNameA(temp, &w);
		return FromSystemCharset(temp);
	}
#else
	char temp[256];
	*temp = 0;
	gethostname(temp, sizeof(temp));
	return FromSystemCharset(temp);
#endif
}

String GetUserName()
{
#if defined(PLATFORM_WIN32)
	if (IsWinNT()) {
		wchar temp[256];
		*temp = 0;
		dword w = 255;
		::GetUserNameW(temp, &w);
		return WString(temp).ToString();
	}
	else {
		char temp[256];
		*temp = 0;
		dword w = 255;
		::GetUserNameA(temp, &w);
		return FromSystemCharset(temp);
	}
#else

Page 7 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21536#msg_21536
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21536
https://www.ultimatepp.org/forums/index.php

	return Nvl(GetEnv("USER"), "boot");
#endif
}

Subject: Re: More Unicode questions
Posted by cbpporter on Tue, 26 May 2009 12:29:50 GMT
View Forum Message <> Reply to Message

And for GetEnv:

String GetEnv(const char *id)
{
#if defined(PLATFORM_WIN32)
	if (IsWinNT()) {
		WStringBuffer temp(32767);
		WString varname(id);
		int len = GetEnvironmentVariableW(varname, temp, 32766);
		temp.SetLength(len);
		WString value = temp;
		
		WString newval = GetWinRegStringW(varname,
L"SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Environment",
HKEY_LOCAL_MACHINE);
		if (!newval.IsVoid())
			value = newval;
			
		newval = GetWinRegStringW(varname, L"Environment", HKEY_CURRENT_USER);
		if (!newval.IsVoid())
			value = newval;
		
		return value.ToString();
	}
	else
		return FromSystemCharset(getenv(id));
#else
	return FromSystemCharset(getenv(id));
#endif
}

Subject: Re: More Unicode questions
Posted by cbpporter on Thu, 28 May 2009 12:06:10 GMT
View Forum Message <> Reply to Message

Page 8 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21556#msg_21556
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21556
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4406&goto=21585#msg_21585
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=21585
https://www.ultimatepp.org/forums/index.php

There was a bug in previous GetEnv post regarding not setting the buffer to smallest size which
caused problems in other paces. I have edited it and hopefully it is correct now. I'll review
everything again to make sure that it works.

Page 9 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

