
Subject: Clang vs. GCC
Posted by dolik.rce on Sat, 06 Feb 2010 22:10:46 GMT
View Forum Message <> Reply to Message

Hello,

I'm not sure if this is the right place to post this, but I couldn't find any category where it would fit. I
installed fresh svn version of Clang (C++ frontend for LLVM) inspired by a news that it finally can
build itself. I was playing with it a bit and of course I tried to compile some U++ code.

I'm not going to talk about the compilation problems, but about interesting error that popped out. In
topt.h there is this template:template <class T>
inline void DestroyArray(T *t, const T *lim) {
	while(t < lim) {
		t->T::~T();
		t++;
	}
}Clang complained about using this template with T=unsigned int, since "type 'unsigned int' cannot
be used prior to '::' because it has no members". After this I was curious about how GCC solves
this problem. Well, the answer is simple: GCC ignores it.

This template is being called with T equal to types like int, const char*, void* without any
problems. When I stepped through this part of code in debugger, the destructor line was simply
skipped, the loop run through the given range of pointers doing nothing usefull.

My knowledge of C++ is quite limited, so I have few questions: How is that possible? Is it a GCC,
Clang or U++ bug? Or is it just me, missing some deep knowledge about inlined functions,
templates or some other dark corner of C++?

I hope someone can enlighten me a bit... I really like Clangs verbosity an it would be great if U++
supported it once (But rewriting half of the Core is just too high price).

Best regards,
Honza

Subject: Re: Clang vs. GCC
Posted by Novo on Sun, 07 Feb 2010 01:01:07 GMT
View Forum Message <> Reply to Message

IMHO in this particular case a Vector should be used instead of an Array. "unsigned int" is
moveable.

Subject: Re: Clang vs. GCC
Posted by mirek on Sun, 07 Feb 2010 08:55:45 GMT

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=24994#msg_24994
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=24994
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25002#msg_25002
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25002
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

Novo wrote on Sat, 06 February 2010 20:01IMHO in this particular case a Vector should be used
instead of an Array. "unsigned int" is moveable.

Has nothing to do with that. This support routine is in fact used for Vector implementation.

Subject: Re: Clang vs. GCC
Posted by mirek on Sun, 07 Feb 2010 09:13:20 GMT
View Forum Message <> Reply to Message

I believe it is Clang bug. By C++ standard, all types, including fundemantal types, have
constructor and destructor.

At the moment, I am unable to find corresponding definition in C++ language definition, closest
info I have found is this:

 http://www.informit.com/guides/content.aspx?g=cplusplus& seqNum=431

BTW, it is in fact impossible to create container templates without this - STL has to do the same
thing. Which is strange, considering Clang refusal to compile it.

Mirek

Subject: Re: Clang vs. GCC
Posted by gprentice on Sun, 07 Feb 2010 10:49:42 GMT
View Forum Message <> Reply to Message

Yep it's a clang bug and a dark corner of C++.

As mentioned in that article, the standard defines a pseudo destructor (5.2.4) one form of which
looks like this
::opt nested-name-specifier opt type-name :: ~ type-name

where the first :: and the nested-name-specifier are optional and type-name is a non-class type.
The only effect is the evaluation of the post-fix expression before the arrow.

There's no such thing as a constructor for a fundamental type but the standard defines (5.2.3 / 2)
that the expression T() for simple type specifier T creates an rvalue of the specified type whose
value is determined by default initialization.

Graeme

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25005#msg_25005
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25005
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25007#msg_25007
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25007
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=6
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25010#msg_25010
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25010
https://www.ultimatepp.org/forums/index.php

Subject: Re: Clang vs. GCC
Posted by Didier on Sun, 07 Feb 2010 11:11:54 GMT
View Forum Message <> Reply to Message

This can be used to optimize the 'DestroyArray()' function by adding specialized versions for
internal types.

This function could be, for example:

template <>
inline void DestroyArray<int>(T *t, const T *lim) {
		}
}

This would then get optimized out by the compiler.

This could be generalized to all internal types and factored by using a IsInternaType class:

// general case for all complex types
template<typename T>
struct IsInternalType
{
		enum { value = 0 };
};

// specialized classes for internal types
template<>
struct IsInternalType<int>
{
		enum { value = 1 };
};

template<>
struct IsInternalType<unsigned int>
{
		enum { value = 1 };
};

template<>
struct IsInternalType<float>
{
		enum { value = 1 };
};

// and so on for all other types you want

// ==
//the generalized function would then become:

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25013#msg_25013
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25013
https://www.ultimatepp.org/forums/index.php

template <int I, class T>
	inline void _DestroyArray(T *t, const T *lim) {
		while(t < lim) {
			t->T::~T();
			t++;
		}
	}

// the specialized version (for internal types) does nothing
template <class T>
static inline void _DestroyArray(T *t, const T *lim) {}

// FINALLY THE ORIGINAL METHOD becomes this
// it automatically selects, AT COMPIL TIME, the wright function depending on it's type
template <class T>
inline void DestroyArray(T *t, const T *lim) {
		_DestroyArray< IsInternalType<T>::value, T >(t, lim);
};

NB: this could be easily extended to any custom type by writeing you're own specialized
IsInternalType classe dedicated to you're type

Edit: maybe the 'IsInternalType()' function would be better named by 'HasDestructor()'

Subject: Re: Clang vs. GCC
Posted by mirek on Sun, 07 Feb 2010 13:35:30 GMT
View Forum Message <> Reply to Message

I think you way understimate the compiler here.... namely dead code elimination.

Mirek

Subject: Re: Clang vs. GCC
Posted by Didier on Sun, 07 Feb 2010 13:47:50 GMT
View Forum Message <> Reply to Message

Yes you are wright.

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25014#msg_25014
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25014
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25016#msg_25016
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25016
https://www.ultimatepp.org/forums/index.php

In this particular case the compiler will probably eliminate the loop.

But if the loop is more complex, this kind of optimization is very handy.

Subject: Re: Clang vs. GCC
Posted by dolik.rce on Sun, 07 Feb 2010 14:35:56 GMT
View Forum Message <> Reply to Message

Wow, nice discussion. Thanks everybody for your thoughts.

The loop gets executed in debug mode. I haven't tried in optimal, but I believe it is optimized.

Template specialization is probably a way to make this work in Clang. But as I said before, that is
too high price.

Fixing Clang would be better solution, should I file a bug on their site? Or probably someone who
knows C++ better than me should report it

I hope that Clang will be usable soon. Just on the side: What is needed to get support for new
compiler? Just a build method in ide/Builders? And is there some documentation on how
buildscripts work? (I mean method Script).

Honza

Subject: Re: Clang vs. GCC
Posted by Sgifan on Wed, 24 Feb 2010 07:53:14 GMT
View Forum Message <> Reply to Message

I read today that clang+LLVM is completely self hosting from now up.

Maybe the bug you show is still present though.

If one day clang is usable with u++ i would be curious to learn how it improves or not the
compilation speed.

Thanks for the test you performed

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25017#msg_25017
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25017
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=860
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25445#msg_25445
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25445
https://www.ultimatepp.org/forums/index.php

