Subject: Bit Twiddling Hacks
 Posted by Novo on Thu, 25 Nov 2010 15:33:02 GMT
 View Forum Message <> Reply to Message

http://graphics.stanford.edu/~seander/bithacks.html
This is a quite interesting collection of small optimized functions by Sean Eron Anderson.

Subject: Re: Bit Twiddling Hacks
 Posted by dolik.rce on Thu, 25 Nov 2010 17:30:54 GMT
 View Forum Message <> Reply to Message

Novo wrote on Thu, 25 November 2010 16:33http://graphics.stanford.edu/~seander/bithacks.html
This is a quite interesting collection of small optimized functions by Sean Eron Anderson. Quite interesting reading Thanks.

Subject: Re: Bit Twiddling Hacks
Posted by Didier on Thu, 25 Nov 2010 20:44:58 GMT
View Forum Message <> Reply to Message
Very interesting tricks when you want high data throughput and want to avoid branching ! Thank's

Subject: Re: Bit Twiddling Hacks
 Posted by Mindtraveller on Sat, 04 Dec 2010 15:35:01 GMT
 View Forum Message <> Reply to Message

May be it will be good idea to include these functions to U_{++}. Some of them are great.

Subject: Re: Bit Twiddling Hacks
 Posted by mr_ped on Mon, 06 Dec 2010 08:00:46 GMT
 View Forum Message <> Reply to Message

sent an improvement for the last one couple of days ago and no answer yet... :/
(oh, I mean, I really did love to read trough them, I even learned couple of new tricks, otherwise I wouldn't dare to work on any improvement, so this is the way how I say I like something... I send improvement, hehehe)

My version of NextBitPermutation if you are curious:
unsigned int $t=(v \mid(v-1))+1$;
$\mathrm{w}=\mathrm{t} \mid\left(\left(\mathrm{v}^{\wedge} \mathrm{t}\right) \gg(\right.$ __builtin_ctz(v) + 2)$)$;

