
Subject: BackgroundTask
Posted by dolik.rce on Wed, 16 Feb 2011 12:52:45 GMT
View Forum Message <> Reply to Message

As discussed in the thread about MT in theide, there is sometimes need to run some lengthy task
in background, while the rest of Application stays responsive.

Ideal solution should use Thread in MT mode and ProcessEvents() in single threaded
environment to achieve maximum effectiveness. Here is my first attempt to create such class:bool
ProcessForeground(){
#ifdef _MULTITHREADED
	DUMP(Thread::IsShutdownThreads());
	return !Thread::IsShutdownThreads();
#else
	Ctrl::ProcessEvents();
	return true; //is it possible to detect application is being closed?
#endif
}

class BackgroundTask{
	typedef BackgroundTask CLASSNAME;
	#ifdef _MULTITHREADED
	Thread t;
	#endif
	bool running;
	void Watch(Callback task) {running=true; task(); running=false;}
public:
	void Start(Callback task);
	bool IsRunning() {return running;}
	BackgroundTask():running(false){}
	BackgroundTask(Callback task) {Start(task);}
};

void BackgroundTask::Watch(Callback task){
	running=true;
	task();
	running=false;
}

void BackgroundTask::Start(Callback task){
	#ifdef _MULTITHREADED
	t.Run(THISBACK1(Watch,task));
	#else
	PostCallback(THISBACK1(Watch,task));
	#endif
}
There is few requirements on the task and application that runs it. Task must call
ProcessForeground() periodically, often enough to keep the UI responsive. If

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31240#msg_31240
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31240
https://www.ultimatepp.org/forums/index.php

ProcessForeground() returns false, the task must finish as soon as possible. In MT mode the
application must call Thread::ShutdownThreads(), so that any running tasks know that it is time to
terminate itself.

In attachment there is a full code of a testing app. Known bugs: In ST mode you must close the
window twice (press Alt+F4 or cross button twice), to make it really close. Probably easy to fix. In
MT, calling ShutdownThreads assumes that there are no threads expected to run even after the
Background tasks are terminated. This should be rarely problem, but to have a peace in mind, I
would prefer separate solution.

I'm looking forward to your comments,
Honza

File Attachments
1) bgtask.cpp, downloaded 419 times

Subject: Re: BackgroundTask
Posted by dolik.rce on Wed, 16 Feb 2011 14:32:13 GMT
View Forum Message <> Reply to Message

Slightly improved version:class BackgroundTask{
	typedef BackgroundTask CLASSNAME;
	#ifdef _MULTITHREADED
	Thread t;
	#endif
	bool running;
	const int id;
	static Index<int> list;

	void Watch(Callback task);
	static int AssignId();

	friend bool ProcessForeground(int);
public:
	void Start(Callback task);
	void Stop() {int n=list.Find(id); if(n>=0) list.Remove(id);}
	int GetId() {return id;}
	bool IsRunning() {return running;}
	BackgroundTask():running(false),id(AssignId()) {}
	BackgroundTask(Callback task):id(AssignId()) {Start(task);}
};
Index<int> BackgroundTask::list;

void BackgroundTask::Watch(Callback task){
	running=true;
	task();
	Stop(id);

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3099
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31244#msg_31244
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31244
https://www.ultimatepp.org/forums/index.php

	running=false;
}

int BackgroundTask::AssignId(){
	static int sid=0;
	return sid++;
}

void BackgroundTask::Start(Callback task){
	if(IsRunning()) Stop();
	list.Add(sid);
	#ifdef _MULTITHREADED
	t.Run(THISBACK1(Watch,task));
	#else
	PostCallback(THISBACK1(Watch,task));
	#endif
}

bool ProcessForeground(int id){
#ifndef _MULTITHREADED
	Ctrl::ProcessEvents();
#endif
	return BackgroundTask::list.Find(id)>=0;
}
It allows stopping tasks individually based on unique ID. Also reusing the task instances should
work now. The major difference is that ProcessForeground now takes task ID as argument.

Honza

EDIT: Removed file due to contained errors

Subject: Re: BackgroundTask
Posted by mirek on Wed, 16 Feb 2011 14:41:31 GMT
View Forum Message <> Reply to Message

1. I would not bother with ST here. 'background' processing with timerqueue is way too different
from MT IMO to try to reconcile both methods in the single class.
2. Having said that, I do not see any advantage of using BackgroundTask over using plain
Thread...

Subject: Re: BackgroundTask
Posted by dolik.rce on Wed, 16 Feb 2011 15:00:22 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 16 February 2011 15:411. I would not bother with ST here. 'background'

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31245#msg_31245
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31245
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31248#msg_31248
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31248
https://www.ultimatepp.org/forums/index.php

processing with timerqueue is way too different from MT IMO to try to reconcile both methods in
the single class.
2. Having said that, I do not see any advantage of using BackgroundTask over using plain
Thread...
Let me start with the second point: The advantage is that it can be compiled in ST where Thread
is not defined.

The goal of this actually IS to provide single interface for both MT and ST solutions. I am aware
that it doesn't solve every possible scenario, but I think there is non-trivial group of cases where
this might be handy. If extended with couple of Callbacks
(WhenFinished,WhenProgress,WhenStopped), it might be a good way to manage simple tasks
e.g. data loading or processing.

BTW: The above code contained couple errors, they are fixed in the attachment.

File Attachments
1) bgtask.cpp, downloaded 279 times

Subject: Re: BackgroundTask
Posted by koldo on Thu, 17 Feb 2011 17:31:36 GMT
View Forum Message <> Reply to Message

Hello

Not the same but similar is the gif animation in RasterPLayer. See Reference/AnimatedClip demo.

RasterPlayer::SetMT() method if compiled with MT, chooses ST or MT (if compiled with ST, only
ST is available).

Subject: Re: BackgroundTask
Posted by dolik.rce on Thu, 17 Feb 2011 18:17:24 GMT
View Forum Message <> Reply to Message

koldo wrote on Thu, 17 February 2011 18:31Hello

Not the same but similar is the gif animation in RasterPLayer. See Reference/AnimatedClip demo.

RasterPlayer::SetMT() method if compiled with MT, chooses ST or MT (if compiled with ST, only
ST is available).
Yep, very similar idea BackgroundTask could actually have the SetMT() method as well, if
desired. But I think it would be a bit against the original idea (to provide uniform way to manage
background tasks with most effective technology based on MT flag presence).

Honza

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3101
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31268#msg_31268
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31268
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=5864&goto=31270#msg_31270
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31270
https://www.ultimatepp.org/forums/index.php

