Subject: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 16:18:41 GMT

View Forum Message <> Reply to Message

Newbie proposes changes to the library? Well, this is another proof of how well U++ is designed
and implemented.

But will this break the "Everything belongs somewhere" principle? | don't think so. Owned Ctrls will
be taken care of by their parents who own them. So they belong to their parents. As it's clearly
defined and easily determineable, the principle is actually perfectly confirmed.

1. Advantage of allowing parent Ctrl to own certain child.

a. sometimes it's more natural to allocate Ctrl's on the heap;

b. it can relieve the programmer(library user) from keeping track of uninterested objects only to
properly destroy them afterwards;

c. if used with discretion, it can reduce the memory footprint of generated program. | will give
some examples if you don't believe me.

2. Will the proposed change break any existing code?
No. If not impossible, it's very very unprobable that the changes will affect any existing codes that
was not aware of it

3. How signicant are the changes in the current libary codes to allow for children ownship?

It's minimal. | cannot handle it if it's too big as my knowledge with U++ is still very limited. About
6-10 function has been changed, another flag (1 bit) is added which will not increase memory
requirement of Ctrl objects.

Here is a list of the changes (may not be complete)
A. In Ctrl.h
Al

#ifdef PLATFORM_X11

bool ignoretakefocus:1;
#endif

bool owned:1; // <--This line

static Ptr<Ctrl> eventCtrl;
AND

/I proposed changed, open door for libary developer
// but still concealed from library user

I

bool IsOwned()const{ return owned,; }

void SetOwned(bool v=true){ owned=v; }

AND

Page 1 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31586#msg_31586
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31586
https://www.ultimatepp.org/forums/index.php

/Il flag: O - not to be owned, eg for Ctrl alloc on stack or otherwise maintained
/l 1 - yes, own the child, will be responsible for its destruction
/l 2 or other values - the owned flag has been properly set, just use it.

void AddChild(Ctrl *child,int flag=2);

void AddChild(Ctrl *child, Ctrl *insafter,int flag=2);

void AddChildBefore(Ctrl *child, Ctrl *insbefore, int flag=2);
/I seel RemoveChildO for explanation of detachOnly parameter

I

void RemoveChild(Ctrl *child, bool detachOnly=false);
AND

/Il flag 2 means to leave the owned flag untouched(already properly set)
void Add(Ctrl& ctrl, int flag=2) { AddChild(&ctrl, flag); }

To be continued. | am running out of my time.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohait00 on Wed, 16 Mar 2011 16:26:47 GMT

View Forum Message <> Reply to Message

i'm currently facing the same problem, to easily create controls in a tree, without keeping them
around somwhere else. the use case is to have the Ctrl's edit and manipulate some central Values
of the app, where more than one, and different Ctrls can 'point’ to the same bit of Value
information and the user can create and release those controls. i suppose you have something
similar.

AFAIK, the thing of owning Ctrls would make some more changes nessecary. and i dont know if
mirek is willing to take the risk of braking some API handling, and actually a rule of thumb, which
you outlined.

maybe think of some additional mechanism..

anyway, this question is a design aspect decision.
maybe it is to be considered..

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 16:29:02 GMT

View Forum Message <> Reply to Message

AND

// when a child is removed, it should be delete'd if its @param owned

Page 2 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31587#msg_31587
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31587
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31588#msg_31588
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31588
https://www.ultimatepp.org/forums/index.php

/Il flag is true. Sometimes we may want to keep it alive and transfer the
/I ownership to some other Ctrl, in this case, we should call the following
/l function with @param detachOnly set to true

/l

void RemoveChildO(Ctrl *q, bool detachOnly=false);

And corresponding changes in the CtrIChild.cpp file. | have attached these files. The changes
have been commented, so it should stand out. | am on a library computer, session time is limited.

File Attachnents

1) Crl Core.h, downl oaded 522 tines

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 16:30:08 GMT

View Forum Message <> Reply to Message

And CtrlChild.cpp

File Attachnents

1) CrlChild.cpp, downl oaded 599 tines

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 16:39:22 GMT

View Forum Message <> Reply to Message

kohaitOO0:

| have implemented the requested changes. Just replace existing files with my attached version
(make backup before doing that) and you should be able to use it immediately.

Here is some sample how you can use it.

struct MyButton : Moveable<MyButton>, Button
{
/l note: alwasy default to false becasue
Il existing U++ user are used to this behaviour
Il
MyButton(bool toBeOwned=false)

{
SetOwned(toBeOwned);

}

Page 3 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3133
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31589#msg_31589
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31589
https://www.ultimatepp.org/forums/index.php?t=getfile&id=3134
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31590#msg_31590
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31590
https://www.ultimatepp.org/forums/index.php

virtual ~MyButton()
{

}
|8

DUMP("Yes, | am properly destructed!!!");

class App : public TopWindow
{
public:

App()

{
Button * p=new MyButton(true);

Button * p2=new MyButton();

p->SetLabel("Button 1").TopSizeZ(2,20).LeftSize(2, 60);

p2->SetLabel("Button 2").TopSizeZ(40,20).LeftSize(2, 60);

Add(*p); // p will be destructed because we SetOwned in
/I its constructor;

Il or (*this) << p;

Add(*p2, 1);

Please try it and let me know there is any problem. | am not very sure if | changed anything in
Ctrl.cpp.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitO0 on Wed, 16 Mar 2011 17:01:32 GMT

View Forum Message <> Reply to Message

havent tried it yet, but more things that are involved, and need to be checked is at least this:

adding an owned control, which is part of a tree already, to another tree needs to traslate the
ownership to the new tree..

i'll try it soon..
but first, i want to hear from mirek if this is worth it at all

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 17:10:18 GMT

Page 4 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31592#msg_31592
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31592
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

AFAIK, that has already been taken care of by AddChildO or something like that.

void Ctrl::AddChild(Ctrl *q, Ctrl *p, int flag)
{

GuiLock __;

ASSERT(q);

LLOG("Add " << UPP::Name(q) << " to: " << Name());
if(p == q) return;
bool updaterect = true;
bool owned;
switch(flag)
{
default: // note, all value of flag other than 0&1 in this branch
owned=qg->owned;
break;
case O:
case 1:
g->owned=flag==1;

}
/llif(dynamic_cast<q

if(g->parent) {
ASSERT(!g->inframe);

//************************

/I following couple of lines takes care of the issues you raised.

/ kkkkkkhkkhkkhkkkhkkkhkkkkkkkkkkkk
if(g->parent == this) {
RemoveChild0(q, true); // detach only
updaterect = false;
}
else

g->parent->RemoveChild(q, true); // detach only }
g->parent = this;

if(p) {
ASSERT(p->parent == this);
g->prev = p;

g->next = p->next;
if(p == lastchild)
lastchild = q;

else

p->next->prev = q;
p->next = q;

Page 5 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31593#msg_31593
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31593
https://www.ultimatepp.org/forums/index.php

}

else
if(firstchild) {
g->prev = NULL;
g->next = firstchild;
firstchild->prev = q;
firstchild = q;
}
else {
ASSERT (lastchild == NULL);
firstchild = lastchild = q;
g->prev = g->next = NULL,;
}
g->CancelModeDeep();
if(updaterect)
g->UpdateRect();
ChildAdded(q);
g->ParentChange();
if(updaterect && GetTopCitrl()->IsOpen())
g->StateH(OPEN);
if(dynamic_cast<DHCtrl *>(q))
SyncDHCtrl();

}

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 17:29:02 GMT

View Forum Message <> Reply to Message

That's why | praise the design and implementation of U++.

Even though | don't know U++ really well, | can be pretty much sure my solution works or will work
with minor refinement.

It can be proved by reasoning:

1. Every child of a Ctrl is itself a Ctrl2. However deep the derivation chain, the virtual destructor of
Ctrl will alway be called and there will be only one version of the destructor which | touched.

3. In the destructor of Ctrl, it repeatedly remove each of its children by calling RemoveChild;

4. U++ design guaranteed each Ctrl will have but 1 or O parent.

So however ownership is changed during a Ctrl's life time, it will have 1 parent if it was ever
assigned a parent. When its parent is destructed, and its owned flag is set to true, it's guaranteed
to be destruct by our implementation of RemoveChild family functions.

Subject: Re: Proposed change to U++ to allow owning children.

Page 6 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31595#msg_31595
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31595
https://www.ultimatepp.org/forums/index.php

Posted by Lance on Wed, 16 Mar 2011 17:35:51 GMT

View Forum Message <> Reply to Message

| just successfully built ThelDE with the revised library. So it should not affect exsiting code.

Only questions left, will there be some code in the U++ libary that will make use of the bit |
assigned to the new memebe, i.e. owned, magically change it, or will some Ctrl derived class
decides to remove its children by itself and without make use of Ctrl::RemoveChild family of
functions?

If answer to these questions are no, they my way should work (maybe with some more
modifications).

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 17:43:26 GMT

View Forum Message <> Reply to Message

Yet another file that's changed (by insert a single line)
Ctrl.cpp

File Attachnents

1) Ctrl.cpp, downl oaded 352 tines

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 16 Mar 2011 18:24:45 GMT

View Forum Message <> Reply to Message

Here is the line that's been changed in Ctrl.cpp in case you don't want don't the whole file.

Ctrl::Ctrl() {

GuiLock __;

LLOG("Ctrl::Ctrl™);

destroying = false;

owned = false; // <---This line initialized owned to make
// which is necessary!

parent = prev = next = firstchild = lastchild = NULL,;

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 01:13:11 GMT

View Forum Message <> Reply to Message

Page 7 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31596#msg_31596
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31596
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31597#msg_31597
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31597
https://www.ultimatepp.org/forums/index.php?t=getfile&id=3135
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31598#msg_31598
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31598
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31619#msg_31619
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31619
https://www.ultimatepp.org/forums/index.php

Not related to this topic.

One little thing that worries me, U++'s support for Chinese Fonts need more work, or may be it's
because | don't know how to add more fonts yet. See attached for a sample.

The sample text is:

| guess U++ misinterpreted certain parameters in the non-western font information. Neither GTK
nor QT has the same problem.

File Attachnents

1) font problem png, downl oaded 420 tines

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitOO on Fri, 18 Mar 2011 10:01:35 GMT

View Forum Message <> Reply to Message

the flag handling should be better IMHO.

flag = 2 is quite bad, leaving things untouched...
it should determine itself, when the control is owned by someone else, to take over the
responsibility

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 13:39:38 GMT

View Forum Message <> Reply to Message

Hi Kohait00:

Internally, the owned flag has but 2 possible values: true or false. When a Ctrl is removed from its
parent by RemoveChild family of functions, there are 3 scenarios:

1. it's owned and should be automatically deleted by the parent control thereby it's destructor is
called and the memory in the heap to house the Citrl is also freed,;

2. it's not owned. Basically this is the behaviour before the owned flag is introduced. So business
as usual. Exisiting code should not feel any difference. They don't know anything about the owned
flag, don't rely on it and will not be bothered by it.

3. it's owned and should be leave alone. Techinically, it should be named DetachChild. But again,
we don't want to any unexpected impact to users who don't know the existence of this newly
installed capability. So | add an additionaly parameter detachOnly[to the RemoveChild family of
functions, with carefully chosen default value so as no to break existing code. As you can see, in

Page 8 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3137
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31626#msg_31626
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31626
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31631#msg_31631
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31631
https://www.ultimatepp.org/forums/index.php

the AddChild function implementation | highlightly in a previous post, RemoveChild is called with
detachOnly set to true so that it's not destroyed as our realy intention is just to change a dad for it.

Also, it could be useful to library user. User programs can detach a child and take appropriate
actions. The only thing to remember is once a child is detached, the one who detach it has its
ownership. It can either free it, or entrust it to someone else. The principle of "Everything belongs
somewhere" is consistently confirmed.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 14:21:01 GMT

View Forum Message <> Reply to Message

kohait00 wrote on Fri, 18 March 2011 11:01the flag handling should be better IMHO.
flag = 2 is quite bad, leaving things untouched...
it should determine itself, when the control is owned by someone else, to take over the
responsibility
Sorry | misinterpreted you. Your point is valid.
Yes it's possible to revise flag from tribool to bool for all the AddChild*(and Add) functions. The
implementation of the function will need to be changed accordingly.
Another option is to promote SetOwned(bool owned=false) from protected to public, and keep
AddChild prototypes untouched.
public:
/I query owned flag

bool IsOwned()const{ return owned; }
Ctrl& Owned(bool b=false){ owned=b; return *this; }

And the way it's used will be changed to something like this

class App: public TopWindow{

App()
{

Page 9 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31635#msg_31635
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31635
https://www.ultimatepp.org/forums/index.php

Button * p = new Button();
Button * p2 = new Button();

this->Add(p.Owned());
this->Add(p2); // Error, p2 is not owned.

/I fixed p2;
p2.0wned();

Anyway, the detail can be polished and fixed to satisfy majority of users as long as there is no big
holes in the design.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 14:40:52 GMT

View Forum Message <> Reply to Message

Kohait00, Thank for the input.

The second option | proposed is way better. That way:

1. AddChild*/Add, RemoveChild* etc's prototype don't need to be changed.

2. RemoveChild's implementation do not need to be changed.

3. Only Ctrl default constructor and RemoveChild* need to be changed slightly.

| will implement it and upload changed version.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 15:22:08 GMT

View Forum Message <> Reply to Message

Now we have a much cleaner solution thanks to Kohait00's input.
Brief list of changes to the current libary code:

In CtrICore.h

Added to Ctrl class

bool owned : 1;
And 2 public members

Page 10 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31638#msg_31638
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31638
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31641#msg_31641
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31641
https://www.ultimatepp.org/forums/index.php

bool IsOwned()const{ return owned; }
Ctrl& Owned(bool v=true){ owned=v; return *this; }

In Ctrl.cpp, initialized owned flag to false

Ctrl::Ctrl() {

GuiLock _;

LLOG("Ctrl::Ctrl™);

destroying = false;

owned = false; // <-----This line is added
parent = prev = next = firstchild = lastchild = NULL,;
top = NULL,;

exitcode = 0;

frame.Add().frame = &NullFrame();

enabled = visible = wantfocus = initfocus = true;
editable = true;

/I GLX = false;

#ifdef PLATFORM_WIN32

activex = false;

isdhctrl = false;

#endif

backpaint = IsCompositedGui() ? FULLBACKPAINT : TRANSPARENTBACKPAINT;
inframe = false;

ignoremouse = transparent = false;

caretcx = caretcy = caretx = carety = 0;
SetRect(Rect(0, 0, 0, 0));

inloop = popup = isopen = false;

modify = false;

unicode = false;

popupgrab = false;

fullrefresh = false;

akv = false;
hasdhctrl = false;
}

And in CtrIChild.cpp

Il @param: q , the child to be added

I g, an existing child to precede p
void Ctrl::AddChild(Ctrl *q, Ctrl *p)

{

GuiLock _;

ASSERT(q);

Page 11 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

LLOG("Add " << UPP::Name(q) << " to: " << Name());
if(p == q) return;
bool updaterect = true;

// remember and change

bool owned=g->owned,;

g->Owned(false); // that way it's guarenteed not to be
/I accidently delete'd when possibly changing parents

if(g->parent) {
ASSERT(!g->inframe);
if(g->parent == this) {
RemoveChild0(q);
updaterect = false;

}

else
g->parent->RemoveChild(q);

}

g->parent = this;

if(p) {

ASSERT(p->parent == this);
g->prev = p;

g->next = p->next;
if(p == lastchild)
lastchild = q;
else
p->next->prev = Q;
p->next = q;
}
else
if(firstchild) {
g->prev = NULL;
g->next = firstchild;
firstchild->prev = q;
firstchild = q;
}
else {
ASSERT (lastchild == NULL);
firstchild = lastchild = q;
g->prev = g->next = NULL;
}

/I succesfully added as children of *this, now
Il it's perfect time to restore saved owned flag
g->Owned(owned);

Page 12 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

g->CancelModeDeep();

if(updaterect)

g->UpdateRect();

ChildAdded(q);

g->ParentChange();

if(updaterect && GetTopCitrl()->IsOpen())
g->StateH(OPEN);
if(dynamic_cast<DHCtrl *>(q))
SyncDHCtrl();

void Ctrl::RemoveChildO(Ctrl *q)
{

GuiLock __;
ChildRemoved(q);
g->DoRemove();
g->parent = NULL;

if(q == firstchild)

firstchild = firstchild->next;
if(q == lastchild)

lastchild = lastchild->prev;
if(g->prev)

g->prev->next = g->next;
if(g->next)

g->next->prev = g->prev;
g->next = g->prev = NULL,

if(dynamic_cast<DHCtrl *>(q))
SyncDHCitrl();

Il code added to allowed owned child****
if(g->owned)

delete q;

/l end code added by Lance

}

void Ctrl::RemoveChild(Ctrl *q)

{
GuiLock __;

if(g->parent != this) return;
g->RefreshFrame();

bool owned=g->IsOwned();
g->Owned(false); // we still need it to be alive

RemoveChild0(q);
g->ParentChange();

Page 13 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

if(GetTopCtrl()->IsOpen())
q->StateH(CLOSE);

if(owned)

{

delete q; // this is why the new'd-only requirement.

}

// no need to restore g's owned flag, it's either destroyed or
/I its owned flag is correctly set

}

File Attachnents

1) Crl Core.rar, downl oaded 348 tines

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 15:34:42 GMT

View Forum Message <> Reply to Message

And a sample program using this newly added capability.

#include <CtrlLib/CtrlLib.h>
I http:/ljava.sun.com/docs/books/tutorial/uiswing/start/swingTour.html
using namespace Upp;

struct MyButton : Moveable<MyButton>, Button
{
public:
Il should always default to false to confirm with
/I existing U++ users habit
I
MyButton(bool toBeOwned=false)
{
if(toBeOwned)
Owned();

}
virtual ~MyButton()

{
String msg=String().Cat()<<"From within MyButton's destructor, with label "<<GetLabel();

DUMP(msg);

}
h

Page 14 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3138
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31642#msg_31642
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31642
https://www.ultimatepp.org/forums/index.php

struct ButtonApp : TopWindow {
int count;
MyButton button;

Label label;

void RefreshLabel()
{

label = Format("Number of button clicks %d", count);

}
void Click()

{
++count;
RefreshLabel();

}

typedef ButtonApp CLASSNAME;

ButtonApp()

{

count = 0;

/[button=*new MyButton();
Button * p = new MyButton(true);
Button * p2 = new MyButton();

button <<= THISBACK(Click);
button.SetLabel("&I'm an Ultimate++ button!");
Add(button.VCenterPos(20).HCenterPos(200));
Add(label.BottomPos(0, 20).HCenterPos(200));
label.SetAlign(ALIGN_CENTER);
Sizeable().Zoomable();

RefreshLabel();

Add(p->SetLabel("&Another button™). TopPosZ(10, 50).LeftPosZ(30, 200)); // becuase MyButton
is contructed with proper flag
Add(p2->SetLabel("Heap Button 2").TopPo0sZ(10, 50).LeftPosZ(250,200).0Owned());

}
h

GUI_APP_MAIN

{
ButtonApp().Run();

}

With output:

msg = From within MyButton's destructor, with label I'm an Ultimate++ button!

Page 15 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

msg = From within MyButton's destructor, with label Another button
msg = From within MyButton's destructor, with label Heap Button 2

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Fri, 18 Mar 2011 18:32:51 GMT

View Forum Message <> Reply to Message

Lance wrote on Wed, 16 March 2011 12:18Newbie proposes changes to the library? Well, this is
another proof of how well U++ is designed and implemented.

But will this break the "Everything belongs somewhere" principle? | don't think so. Owned Ctrls will

be taken care of by their parents who own them. So they belong to their parents. As it's clearly
defined and easily determineable, the principle is actually perfectly confirmed.

Sorry, but you would have hard time to convince me to go this way.
| guess the 'U++ legit' solution to this problem is to use Array.
struct Parent : ParentCitrl {
Array<Ctrl> child;
template<class T> T& Create() { T& x = child.Create<T>(); Add(x); return x; }

I3

| believe that the moment you encourage using manual heap usage, the whole idea collapses.
You start adding flags to what is owned and what is not everywhere and end in regular C/C++
heap mess, moments later wishing that you had garbage collector to deal with it...

Mirek

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Fri, 18 Mar 2011 18:35:12 GMT

View Forum Message <> Reply to Message

Lance wrote on Thu, 17 March 2011 21:13Not related to this topic.

One little thing that worries me, U++'s support for Chinese Fonts need more work, or may be it's
because | don't know how to add more fonts yet. See attached for a sample.

Page 16 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31648#msg_31648
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31648
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31649#msg_31649
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31649
https://www.ultimatepp.org/forums/index.php

The sample text is:

| guess U++ misinterpreted certain parameters in the non-western font information. Neither GTK
nor QT has the same problem.

| guess you should repost this in separate thread and also provide information about the host-OS.

Mirek

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 22:02:15 GMT

View Forum Message <> Reply to Message

mirek wrote on Fri, 18 March 2011 19:32
Sorry, but you would have hard time to convince me to go this way.

| guess the 'U++ legit’ solution to this problem is to use Array.

struct Parent : ParentCitrl {
Array<Ctrl> child;

template<class T> T& Create() { T& x = child.Create<T>(); Add(x); return x; }
I3

| believe that the moment you encourage using manual heap usage, the whole idea collapses.
You start adding flags to what is owned and what is not everywhere and end in regular C/C++
heap mess, moments later wishing that you had garbage collector to deal with it...

Mirek

| knew it's going to be a tough job But there is a distinction between allowing and encouraging.
Like smoking and drinking are still allowed in most countries but that doesn't mean their
governments are encouraging the practices.

| have no doubt that the problem can be solved elegantly in the current U++ framework without
introducing anything extra. ThelDE, which has a graphical designer allowing it to create children at
users' requests is a good proof of such capability.

That being said, the solution you proposed has certain drawbacks. That container can only host
Ctrl itself, or with some effort, we can make it to host objects of class derived from Ctrl without

Page 17 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31654#msg_31654
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31654
https://www.ultimatepp.org/forums/index.php

introducing any member variables. Beyond that, you need to provide a different container for
almost every type of Ctrl derivatives that it will ever host. This fact alone will make Array<Ctrl>
impractical.

Array<Ctrl*> is the next best alternative. Unfortunately Array<Ctrl*> will not delete the pointers it
hold upon its destruction. Either we enclose it in a class to ensure pointed Ctrls are deleted or, we
can store some smart pointer objects instead.

What if the situation requires many child be removed and added, ie., in a really dynamic situation?
We probably need to use Index.

What do we gain from introducing an Array<Ctrl*> members or its Index version to keep track of
dynamically created children at the cost of more memory space and CPU cycles? Virtually
nothing.

Compare the two cases:

1. Owned children allowed. Simply Add(CtrlObject.Owned()); and RemoveChild(CtrlObject);
Programmer understand there is a contract between him/her and the libaray, when he/she set the
object as Owned, he/she surrenders the ownership to the containing object, just like he/she will
sometimes ask a smart pointer object to take care of new'd objects

/l when add
this->Add((new MySpeicalCtrl())->SizePosz(...).Owned());

/I if the child is to destroy with *this, nothing

/I further needs to be done,

/I however, if user interactions require it to be removed
I

Ctrl * p = find_the_child_some_how();
this->RemoveChild(p);

/I or more flexible, the program decide to take back ownership
Ctrl * p = find_the_child_some_how();

p->Owned(false);

this->RemoveChild(p);

/l now p become freestanding, and it's the programmer's
Il responsibility to delete it when no longer needed,
/l or, find a new dad for it.

MySpecialCtrIContainer.Remove(actrl);
[/code]
2. Current status with no owning children support.

/l when add
MySpecialCtrl * p=MySpecialCtrIContainer.Create();

Page 18 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

/] Setting up p properties
this->Add(*p);

/l when remove
this->Remove(actrl);
MySpecialCtrIContainer.Remove(actrl);

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Fri, 18 Mar 2011 22:18:15 GMT

View Forum Message <> Reply to Message

Lance wrote on Fri, 18 March 2011 18:02

That being said, the solution you proposed has certain drawbacks. That container can only host
Ctrl itself, or with some effort, we can make it to host objects of class derived from Ctrl without
introducing any member variables.

Totally untrue. You can put anything derived from Ctrl there without any compromises or efforts.
See

http://www.ultimatepp.org/reference$DynamicDIg$en-us.html

(and perhaps learn about U++ containers and Array flavor).

Mirek

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 22:34:35 GMT

View Forum Message <> Reply to Message

Thank you for the quick reply. The example really amazed me. | guess | mixed Array with Vector. |
didn't look into the code, but | guess Array introduced another layer so that like link list/map, etc, it
doesn't require objects be stored in adjacent memory locations.

In the link you give to me, only Labels are stored in Array<Label>. But | don't dispute you. | will do
a test to put Ctrl objects of different size to an Array<Citrl>.

If that's the case, the additional costs to maintain dynamic object is not that hefty. But it still didn't

Page 19 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31655#msg_31655
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31655
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31656#msg_31656
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31656
https://www.ultimatepp.org/forums/index.php

solve the problem | raised regarding use cases where frequent insertion and deletion is needed.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Fri, 18 Mar 2011 22:40:42 GMT

View Forum Message <> Reply to Message

Lance wrote on Fri, 18 March 2011 18:34
If that's the case, the additional costs to maintain dynamic object is not that hefty. But it still didn't
solve the problem | raised regarding use cases where frequent insertion and deletion is needed.

If you are concerned about Array::Remove/Insert costs, | believe that can easily work up to 10000
elements without issue.

If you get over that, you are dealing with some very special situation anyway and "owned" flag is
not going to help you very much | believe.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Fri, 18 Mar 2011 23:02:37 GMT

View Forum Message <> Reply to Message

Thank you very much! | have no doubt with U++'s speed. That's one big aspect why it attracts me.
Very informative.

Since you are here, how do you like my way of revised Ctrl::Ctrl implementation?

Ctrl::Ctrl() {
GuiLock _;
LLOG("Ctrl::Ctrl");

/I a smarter way to implement this function

/I as we can see, most member variable to initialized
// to 0, we can save a couple of cpu cycles by simply
/I zero out the part of object that are of POD type

// Note Non-POD member variable frame, info, pos has been move to
// follow POD members, with pos being the first non-pod member var.
typedef int32 unit; // 4 should be deduced for flexibility

unsigned size=((char*)&this->pos -(char*)this)/sizeof(unit);
for(unsigned i=0; i<size; ++i)

reinterpret_cast<unit*>(this)[i]=0;

Page 20 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31657#msg_31657
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31657
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31659#msg_31659
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31659
https://www.ultimatepp.org/forums/index.php

//destroying = false;

/lowned = false;

/lparent = prev = next = firstchild = lastchild = NULL;
/ltop = NULL,

/lexitcode = 0;

frame.Add().frame = &NullFrame();

enabled = visible = wantfocus = initfocus = true;
editable = true;

I GLX = false;

#ifdef PLATFORM_WIN32

/lactivex = false;

/lisdhctrl = false;

#endif

backpaint = IsCompositedGui() ? FULLBACKPAINT : TRANSPARENTBACKPAINT;
/llinframe = false;

/lignoremouse = transparent = false;

//caretcx = caretcy = caretx = carety = 0;
//ISetRect(Rect(0, 0, 0, 0));

/linloop = popup = isopen = false;

//modify = false;

/lunicode = false;

/lpopupgrab = false;

/lfullrefresh = false;

/lakv = false;:
/Ihasdhctrl = false;
}

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Fri, 18 Mar 2011 23:37:08 GMT

View Forum Message <> Reply to Message

Lance wrote on Fri, 18 March 2011 19:02Thank you very much! | have no doubt with U++'s
speed. That's one big aspect why it attracts me.

Very informative.

Since you are here, how do you like my way of revised Ctrl::Ctrl implementation?
Slightly negative speed impact, saved about 100 bytes of .exe, dangerous w.r.t. code
maintainance...

Mirek

Page 21 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31660#msg_31660
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31660
https://www.ultimatepp.org/forums/index.php

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sat, 19 Mar 2011 00:30:00 GMT

View Forum Message <> Reply to Message

Thank you for giving it a try.

| was surprised to know there was actually a speed penalty. Maybe that's because of the for loop.
Some really smarter compiler will tranlsate the for loop to movsb, movsw, movsdw, etc, then the
for loop will no longer pose a speed penalty.

| was thinking set bit fields will be slower. Maybe just simple put the bitfields in a union and the
whole flags field to O.

Yes, the code will be harder to read and maintain. If somebody accidently add a non-pod data
member into the area that's suppose to be POD members, he/she may be surprised.

A similar occasion.
[code]

Then here in the Draw.h

class Font : AssignValueTypeNo<Font, FONT_V, Moveable >{
union {

int64 data;

struct {

word face;

word flags;

int16 height;

int16 width;

v,

h

Font() { data=0; } // that's the whole point why
/[a union is introduced IMHO

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sat, 19 Mar 2011 00:35:29 GMT

View Forum Message <> Reply to Message

Sorry | am wasting your time. It's not worthy going further.

| still hold the belief that allowing a child to be owned by its parent is not a bad idea. But as the

Page 22 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31662#msg_31662
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31662
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31663#msg_31663
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31663
https://www.ultimatepp.org/forums/index.php

penalty for not allowing it is so small , there is no chance | can persuade you. So | give up.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by mirek on Sat, 19 Mar 2011 09:59:38 GMT

View Forum Message <> Reply to Message

Lance wrote on Fri, 18 March 2011 20:30Thank you for giving it a try.

| was surprised to know there was actually a speed penalty. Maybe that's because of the for loop.
Some really smarter compiler will tranlsate the for loop to movsb, movsw, movsdw, etc, then the
for loop will no longer pose a speed penalty.

Nope, they are slightly slower than series of assignments.
Actually, smart compiler might unroll that loop into series of assignments anyway.

Quote:
| was thinking set bit fields will be slower. Maybe just simple put the bitfields in a union and the
whole flags field to O.

Now that would be smarter. Still, compiler are good, | would not be surprised if they replaced
those assignements anyway.

Anyway, we are speaking here about negligible impacts on result (this area of code is definitely
irrelevant optimization-wise).

But my primary complaint is that the loop is poor choice for quality of code, too error-prone.

Quote:
Then here in the Draw.h

class Font : AssignValueTypeNo<Font, FONT_V, Moveable >{
union {

int64 data;

struct {

word face;

word flags;

int16 height;

int16 width;

v

h

Page 23 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31670#msg_31670
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31670
https://www.ultimatepp.org/forums/index.php

Font() {data=0; }// that's the whole point why
/[a union is introduced IMHO

Data is used to hash Font value and to compare it too.
Anyway, in any case there are 4 stable fields in union. Such situation is easily manageable.

Ctrl fields are much more numerous and change over time.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitOO on Sun, 20 Mar 2011 09:32:56 GMT

View Forum Message <> Reply to Message

i am dealing with the same issue, and will, if fortunate, provide a no-need-to-touch-upp solution
soon..using a container interface and a template approach, so you can safely handle the stuff with
Array<Ctrl>

just a hint, i myself where trying to convince mirek of things several times . his experience is hard
to beat. upp demands/suggests to give up some long existing (and maybe errorprone)
programming habbits. the benefit (especially when using upp) is clear code, simple model
approach and a high degree of code readability (and thus maintainability). take your time to get
familiar with upp and its way to handle things. you quite soon gonna love it. it saves you a lot of
hassle (just to mention a few: no pointer hassle, memleaks almost never (everything belongs
somewhere) and a sophisticated serialisation/marshalling mechanism. upp is well thought out,
and the things mirek is defending are part of a long run design process which prooved to be
reliable.

cheers

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sun, 20 Mar 2011 13:07:29 GMT

View Forum Message <> Reply to Message

Thanks, kohaitO0! As mirek has demonstrated, it's not hard.

The only issue is if it's worthy. Paying the cost of an additional container (| didn't look into Array
implementation, from its interface, it's probably an Vector of pointers pointing to individually
allocated objects. The user would not feel a difference. But still there are memory cost & speed
cost paid.) so that Upp libary users can do without manual new/delete, that's something | cannot
appreciate at my current level or mindset.

Page 24 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31691#msg_31691
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31691
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31694#msg_31694
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31694
https://www.ultimatepp.org/forums/index.php

It's really a philosophical/religious difference. Many ones believe pointers are evil, Java go as far
as do away with it completely, but that doesn't make the small bunch us to leave C++ and
embrace it.

C++ also encourages using its library and smart pointers to minimize the chances to use new or
have to keep track of new'ed objects. But it certainly doesn't go as far as declaring new/delete a
privilege of library developers only.

Anyway, this is really unimportant. As | have said, we stand no chance to convince mirek, who
have achieved so much with the sticking to his philosophy, plus the cost is but minimal.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sun, 20 Mar 2011 13:11:50 GMT

View Forum Message <> Reply to Message

BTW, I like the IDE facility (probably by overloading global new/delete) to detect memory leak in
debug mode. It's very convenient and considerate.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sun, 20 Mar 2011 13:28:08 GMT

View Forum Message <> Reply to Message

It jJust come to me that we can change the interface slightly to make it unnecessary/impossible for
end users to use new directly.

Add a template member function to the Ctrl class

class Ctrl...

{

bool owned : 1;

protected:
bool IsOwned()const{ return owned; }
Ctrl& Owned(bool v){ owned=v; return *this; }

public:
template <typename ChildType>
ChildType& AddOwned()
{
ChildType* p=new ChildType();
p->Owned();
(void)Add(p);
return *p;

Page 25 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31695#msg_31695
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31695
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31696#msg_31696
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31696
https://www.ultimatepp.org/forums/index.php

template <typename ChildType, typename T>
ChildType& AddOwned(T& t)
{
ChildType* p=new ChildType(t);
p->Owned();
(void)Add(p);
return *p;

}

I/ return ChildType so that user can further set its
Il properties.

/I The IsOwned and Owned functions will be demoted to protected
/Il so that they are available only to libary developers

Il

/I whether a child is owned is a one time decision.

/I an owned child will not be able to be reverted to unowned
// by end user (without derive from the Ctrl class or its

/[derivatives), but he/she is free to change parents for it

Il

/Il Unless the end user uses some hackish practice,

/I library developers can be assured the owned flag

Il is reliable and predictable.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitOO on Fri, 25 Mar 2011 12:26:11 GMT

View Forum Message <> Reply to Message

still interested in that topic?

i think having owned Citrls just like that wont do much, since you have to know/reference the
controls somehow/somewhere, you will end up traversing the child link tree, and doing
dynamic_casts allover.

ultimate is heavily based on compile time connection of the application parts, means, if you have a
Ctrl and place it somewehere, then you probably will hook up some static (not runtime specific)
functionality to it, within your code.

a heap creation of Ctrls implys some sort of dynamic application behavior. for what the controls
need to be fairly straight forward in handling, i.e. only Get/SetData interface unsing, only
WhenAction Callback using, etc.. anything else is too specific.

Page 26 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31765#msg_31765
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31765
https://www.ultimatepp.org/forums/index.php

i basicly have the same problem. that's why some time ago, i started the CtrIProp package in
bazaar. a uniform api to query/control some properties of Controls, without actually knowing its

type.

another project i am currently takling is the generation / modification of Controls in its position, a
control factory so to say, which would be extended using *decorator* design pattern.
meanwhile see the CtrlPos package. which is part of it.

maybe thats sth you can use as well. see also FormEditor, which is another nice work, from
someone else.

as soon as the ctrl factory is in a fitting shape i'll provide it in bazaar.

cheers

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Sun, 27 Mar 2011 13:33:57 GMT

View Forum Message <> Reply to Message

kohaitOO:
Sounds interesting. Please let me know when you do.

Thanks,
Lance

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitO0 on Sun, 17 Apr 2011 15:25:02 GMT

View Forum Message <> Reply to Message

in my journey exposing core elements of upp to python i ran into this issue again. it'd make things
really easy, if a control can own another.

in python, the idea of using only a known set of interfaces when dealing with Ctrl is crucial, to be
able to make dynamic guis, where Value is the core data element (which is pretty much what a
Python object is). a python exported Ctrl is instanced by python interpreter and is able to manage
the instance itself or transfer the owning to another facility. creating ctrl instances in python is
crucial, when decorating ctrl functionality with python means is desired..

but maybe exporting upp ctrls to python will also benefit from the stuff i described before (the
additional dont-touch-upp layer).

anyway, maybe this should be reconsidered.

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=31782#msg_31782
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=31782
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32020#msg_32020
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32020
https://www.ultimatepp.org/forums/index.php

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Tue, 19 Apr 2011 04:00:56 GMT

View Forum Message <> Reply to Message

We'll probably not going to see owned children in Upp any time soon. But this problem HAS been
elegantly solved: Interface similar to Array::Create<ChildType>() to avoid end user having to use
new operator; virtually no additional cost except a couple of cpu cycles; no existing code will be
broken.

Please let me know if | am wrong

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohaitO0 on Tue, 19 Apr 2011 07:14:10 GMT

View Forum Message <> Reply to Message

where can i see this interface? you dont mean mine

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Tue, 19 Apr 2011 12:09:20 GMT

View Forum Message <> Reply to Message

In post 31696. | change the interface so that using new is no longer required and no longer
permitted. When user wants a child to be owned(thus destroyed) by its parent, he/she uses the
following way:

parent. AddChild<Label>().SetLabel("Hello world!")
.PosRight(...).PosTop(...);

Button& b=parent.AdddChild<Button>.SetLabel("Click Me!");

b<<THISBACK(ButtonClicked);

Non-owned child controls are still added in the old way.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohait00 on Tue, 19 Apr 2011 16:05:37 GMT

View Forum Message <> Reply to Message

now got you..

though it's nice the way you planned it, the way upp handles ownership in containers i.e. is a bit
different.

Page 28 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32038#msg_32038
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32038
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32046#msg_32046
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32046
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32053#msg_32053
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32053
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32058#msg_32058
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32058
https://www.ultimatepp.org/forums/index.php

there, the implicit rule of thumb is (asuming Array is used)

that a pointer denotes a freshly created element (see Add(T* x) function in Array) for which the
container needs to take ownership. moreover, there is the Detach() function, returning the pointer
indicating that ownership has been stopped and the user needs to take care of that element
again.

sth like this should also be expected from the ownership interface for Ctrl (if anytime to come).

IMHO ownership is not usefull in a C++ only / static environment (where no controls are created
and thus nothing needs to be deleted). they are defined in Layout and done.

for dynamic environment OTOH, where controlls with a reduced set of api
(GetData,SetData,WhenAction Callback) are created and destroyed in a deliberate manner,
ownership would improove codeability.. (especially thinking about scripting layouts, like my current
intent: Python).

thus maybe mirek can help with some ideas. but it needs to be thought out well, since it touches
the upp philosophy..

BTW: as soon as the last little fix from CtrlLib is online, i'll post here a current environment, for
dynamic control handling, like promised.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 20 Apr 2011 00:44:11 GMT

View Forum Message <> Reply to Message

Adding Detach is a piece of cake.
Something like this:

Ctrl& Ctrl::Detach()
{
if(owned)
{
owned=false;
parent->RemoveChild(this);
}

return *this;

| intentionally disallow all subsequent changing owned state capabilities so that it appears less
dangerous/error-prone. If nobody can detach it, its destruction by its parent is guaranteed.
Changing parent will not break the mechanism. Detach and leave alone will open the door for

Page 29 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32069#msg_32069
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32069
https://www.ultimatepp.org/forums/index.php

memory leak.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohait00 on Wed, 20 Apr 2011 06:51:25 GMT

View Forum Message <> Reply to Message

Lance wrote on Wed, 20 April 2011 02:44Adding Detach and leave alone will open the door for
memory leak.

Detach is dangerous, but it's there and sometimes needed. the coder has to have the possibility to
handle stuff in fair custom ways as well. the containers do have it too.

could you provide the files with all the latest changes as one? i'm bit lazy to collect it.. i'd like to
review it maybe can get some idea..thanks in advance

cheers

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 20 Apr 2011 17:24:08 GMT

View Forum Message <> Reply to Message

Will do.

| am working on something | called RecordSet/Dynamic Struct, maybe a reinvention of wheel. But
it keeps really busy.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 20 Apr 2011 19:17:05 GMT

View Forum Message <> Reply to Message

| didn't backup my original work. Basically | have to redo what has been done.

Overwrite the Upp libary version of Ctrl.cpp CtrlCore.h CtrlChild.cpp (or whatever names) with
attached version. Backup before proceed.

BTW, those files are in $(UPPMAIN)/uppsrc/CtrlCore directory.

Attached is also a test program. How do | know it works? No news is good news: had there been
memory leak, our honest ThelDE will not forget to prompt us.

File Attachnments

1) Crl Support OmedChi | dBackup. rar, downl oaded 339 tines

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32073#msg_32073
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32073
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32078#msg_32078
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32078
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32079#msg_32079
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32079
https://www.ultimatepp.org/forums/index.php?t=getfile&id=3193
https://www.ultimatepp.org/forums/index.php

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 20 Apr 2011 19:23:36 GMT

View Forum Message <> Reply to Message

Out put of sample program:

And the main content of the sample program:

using namespace Upp;

class MyLabel : public Label

{

public:

MyLabel(String& s){ SetLabel(s); }
3

struct ButtonApp : TopWindow {

ButtonApp() : count(0)
{
Sizeable().Zoomable();
Click();

}

void Click()

{.

intx,y;

Ctrl * p;
x=count%max_row_button*(button_width+5)+2;
y=count/max_row_button*(button_height+5)+2;

if(count & 1)
p=&NewChild<MyLabel>(String().Cat()<<"['<<count<<"] A Label");
else
{

p=&NewChild<Button>()

.SetLabel(String().Cat()<<"["'<<count<<"] Click Me");
(Button)p<<=THISBACK(Click);

}

p->LeftPos(x,button_width). TopPos(y,button_height);

++count;

}

Page 31 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32080#msg_32080
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32080
https://www.ultimatepp.org/forums/index.php

typedef ButtonApp CLASSNAME;

private:

const static int button_width=180;
const static int button_height=40;
const static int max_row_button=5;

int count;

8

GUI_APP_MAIN

{
ButtonApp().Run();

}

File Attachnments

1) DYNAM C CHI LD. PNG, downl oaded 854 ti nes

Subject: Re: Proposed change to U++ to allow owning children.
Posted by Lance on Wed, 20 Apr 2011 19:38:59 GMT

View Forum Message <> Reply to Message

Detach is implemented as protected. Intended for libary developer or person who knows how to
handle it as it opens the door for possible leaks!

Also, there is one step | omitted. The owned flag should be unset in Ctrl copy constructor. If pick
semantics is guaranteed, this will not be an issue. There is something we need to worry about
only when there is prospect that the fix will be included into the library.

The reason being, a programmer may copy a dynamically created Ctrl to a stack allocated object.
If this happen, the owned flag is wrongfully set and will lead to memory corruption. The move
constructor (pick semantics) should always be preferred. The copy constructor should be
"protected” so that it's available only to library developer or person know its potential danger.

Subject: Re: Proposed change to U++ to allow owning children.
Posted by kohait00 on Thu, 28 Apr 2011 14:32:57 GMT

View Forum Message <> Reply to Message

just as promised here comes my current test package, it's really a test package.

it can create on the fly new controls (which are meant to be hooked to a specific interface which is
not yet finished). the gui can be saved and restored.

just a short description:

Page 32 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3192
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32081#msg_32081
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32081
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32160#msg_32160
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32160
https://www.ultimatepp.org/forums/index.php

* go to live work tab

* click small rectangle at top left in view area, this will switch to edit mode

* click some control, it becomes selected and the properties are displayed and can be modified on
the fly (live work)

* moving can be performed just as used from RectCtrl, if ever tried, use STRG, SHIFT as
modifiers to restrict movements..

* while moving a control, hold ALT to move it *into* another, adding it as child, or move it outside
its parent.. very fluid.

* the bottom frame of view area has got a Ctrl prototypes factory, it uses the same moving + hold
ALT means to place the prototype onto the surface of another control or view area. the factory
recreates the control in its own view area again.

* moving + hold ALT a control from somewhere into the factory again will leave it there pending for
delete. the next control moved to the factory will toggle a remove of the previous. thus you can
move a 'deleted' control back to surface if you change your mind.

* I'm extending the current Ctrl with an interface that manages the ownership of similar controls. it
wont own Ctrl's that are not derived from that interface.

beeing already said its only my test environment. it's not complete. but it's what i plan to do.
basicly inspired from

jazzmutant's lemur control (if ever heared of it, thus a python console is to be included there as
well, see BoostPyTest in bazaar).

let me know if that goes in your direction.
i admit, Ctrl having ownership means would greatly simplify this all.

File Attachnents

1) LiveWrkTop.rar, downl oaded 313 tines

Subject: revised ownership change
Posted by kohait00 on Thu, 28 Apr 2011 16:28:42 GMT

View Forum Message <> Reply to Message

hi Lance

i've gone though the code and based on your work redid it.
current state is attached.

the scenarios are basicly theese:
1) normal scenario (current upp)

Ctrls are added to arbitrary context to be displayed, ownership context is maintained somewhere
else. -> 2 different contexts, perfect control over whats happening. for complex environment.

Page 33 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3200
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32161#msg_32161
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32161
https://www.ultimatepp.org/forums/index.php

2) ownership scenario (additional)

heap created controls can be added to other controls that will maintain their lifetime together with
their visual context. means, when an owned Ctrl is removed from its owning parent, the parent is

taking care of destruction. so both contexts, visual and ownership are bound. fits well for dynamic
environment with reduced Ctrl APl usage (GetData/SetData, WhenAction, etc)

features

* traditional upp way still default

* ownership adding (AddOwned, Detach) is only interface for dealing with ownership (similar to
containers)

* auto transfer of ownership supported when an owned Ctrl is added to another parent.

* least intrusive code

* drawback: owned controls may not call Remove(), since their parent will try to delete them.
ASSERT placed. arguable.. use Detach for that.. or specify implicit Detach with Remove?

changes to your version:

* removed template creators, not needed for ownership management.

* code cleanup and simplification

* redefined public interface for ownership (mainly: no public Owned(bool b true) method, veeery
dangerous)

* some ASSERTS placed to ensure proper behaviour and early fault catch

* delete only in one place.. avoids some conrercases when context switching.

take a look..
maybe mirek will be really considering it. at least look at it

File Attachnents

1) Dynam cChild.rar, downl oaded 332 tines

Subject: Re: revised ownership change
Posted by Lance on Thu, 28 Apr 2011 19:45:59 GMT

View Forum Message <> Reply to Message

Good job.

Except the template creator should be kept. It's simulating the Array::Create<ChildType>()
interface. Look at it this way, a Ctrl is a special type of container: it references some of its children
while owning (responsible for their destruction) some others. Since allowing library user to change
the owned flag is regarded as unsafe, and use of new/delete by library users is generally
discouraged, it makes sense to have a similar Create/Detach interface like does Array.

The point of the template creator (NewChild, AddOwned, CreateOwned or whatever we may
choose to call it) is to eliminate the necessity of asking end user to supply a new'ed object, instead
of:

Page 34 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3201
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32167#msg_32167
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32167
https://www.ultimatepp.org/forums/index.php

parent. AddOwned(new Button());
now use

parent.CreateOwned<Button>();
1

/I similar to

/I anArray.Create<Button>();

1

Yes, any access to owned flag should be protected. That's my true intention. Thanks for fixing it.

| still think that to expose Detach to public scope is not a good idea. It should be protected and
only accessible through inheritance. Even though it works in common/reasonable senario:

1. a Ctrl is Detached from its parent:

In any case, the Ctrl is removed from its parent's children list. If the Ctrl has owned flag set, a
pointer to it will be returned so that user code will be responsible for its eventual destruction; if its
a normal stack resident Ctrl. a NULL pointer will be returned to signal the user not to try to delete
it afterwards.

2. the user delete's the detached Ctrl after finished using it. No problem, expected scenario.

3. the user decide to add the ctrl to another Ctrl as child by way of Add(), AddChild(), etc. Since
the owned flag is correctly set, the new parent will be responsible for its destruction.

So it seems no hole is introduced. But here Add(), AddChild() becomes ambiguous to the user.
The user may form an impression that Add()/AddChild() can be supplied with any new'ed Ctrls
without the user to worry about their eventual destruction. To avoid this confusion, maybe it's best
to simply hide it from library users.

Subject: Re: revised ownership change
Posted by kohaitO0 on Thu, 28 Apr 2011 19:57:25 GMT

View Forum Message <> Reply to Message

for Create<> i go with you..

for Detach i disagree. there is no point in offering Ownership ability to Ctrl without offering the
complete interface to manupulate it. calling RemoveChild() would delete the child. so there is
actually no way to safely get the owned ctrl back from there.

the question is

Page 35 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32168#msg_32168
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32168
https://www.ultimatepp.org/forums/index.php

should Detach be handled explicitly or should a Remove() call on an owned child be seen as
detaching it?

i think the later is quite logical, but it'd leave dangeling references in places Remove is used
without the awareness of dealing with a floating reference.

Subject: Re: revised ownership change
Posted by Lance on Thu, 28 Apr 2011 21:18:09 GMT

View Forum Message <> Reply to Message

Personally | don't dislike Detach at all. It's hard to think of a situation where Detach causes
problem more than Array::Detach does. The only problem is that it will make the code harder to
understand for somebody who doesn't go deep enough on this topic.

And if a Child control can be Detached, could it be reattached to another parent? If the answer is
not, than Detach would be perfectly fine. If the answer is yes, essentially you open the door for
add a user newed object which Mirek objects.

So either:

1. Call parent.CreateOwned<ChildType>() to create the object on heap and add as parent's child;
2. When the child is expected to be killed, hide it, access all its properties, and call
parent.Remove(..)

or

1. Call parent.CreateOwned<ChildType>() to create the object on heap and add as parent's child;

2. When the child is no longer needed, Detach it and remember the returned poiter.
3. Access its properties, and delete it manually.

The advantage of case 2 over case 1 is that it allow the parent be destructed while the child
remain valid, think about the case where the parent itself is its parent's dynamically created child.

The disadvantage of case 2 over case 1 is that it requires the library user to use delete. But since
he/she has to delete the object returned by Array::Detach, it should not hurt that much.

If you agree with my above analysis, | go with case 2 too. Or do you have other recommendation?

Subject: Re: revised ownership change
Posted by Lance on Thu, 28 Apr 2011 21:31:33 GMT

View Forum Message <> Reply to Message

In either case 1 or 2, a CreatedOwned child can change parent like any other stack Ctrl without

Page 36 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32169#msg_32169
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32169
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32170#msg_32170
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32170
https://www.ultimatepp.org/forums/index.php

losing track. So this is not a concern. Or, change parent is perfectly defined behavior for either
type of children.

If we go with Case 2, CreateOwned+Detach, a detached child should never be reattached to a
parent [by calling AddChild(...) etc]. It's a final decision, you detach it, you destruct it. However,
Derived class can reattach by way of protected member function.

This is a virtually zero cost, safe, and consistent solution as far as | can see.

Regarding the hole when copying/picking(yes, picking also requires reset the owned flag), we can
tinker the Ctrl pick constructor a little bit to fix it.

Subject: Re: revised ownership change
Posted by Lance on Thu, 28 Apr 2011 21:54:08 GMT

View Forum Message <> Reply to Message

In the rare case where we are destructing its parent but could not make up our mind whether we
are going to delete it or assign it to yet another parent (not decided at the moment), we can use a
dirty trick to circumvent the no-reattachment limitations,

{

/I p is pointed to a dynamically created child

ParentCtrl tmp;

tmp.Add(p); // or should it be *p? | rely on ThelDE on this
// now p is no longer part of its previous parent's
/I child tree.

// Destruct its previous parent to free precious memory resource :)
/[and since *p belongs somewhere else, it will not be touched.

/I a thousand lines/function calls to make up our mind whether
/l we are going to destruct *p or add it to another parent.

if(newdad !'=NULL)
newdad->Add(p);

// we don't even need to detach and delete, as p will be
/I destructed with tmp at the end of the code block

/Il if a newdad is not successfully found.

/Il this is the expected behavior

Page 37 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32171#msg_32171
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32171
https://www.ultimatepp.org/forums/index.php

Subject: Re: revised ownership change
Posted by kohait00 on Sun, 22 May 2011 19:58:07 GMT

View Forum Message <> Reply to Message

i think mirek wont let this happen, because there is really quite a lot of flaws in it ispecially the
Remove() call of an owned Citrl is a huge problem. since this would delete the Ctrl itself. if not, it
would dangle. but there are a lot of handling expecting the Ctrl to continue to exist after calling
Remove() on it.

so thats why i will procure in developping my LiveWork environment..

have you tried it?

Subject: Re: revised ownership change
Posted by Mindtraveller on Sun, 22 May 2011 22:28:54 GMT

View Forum Message <> Reply to Message

| think U++ owning system is far more efficient than ordinary approach. So | wouldn't recommend
embed QT-style management of controls.

It is better learning better approaches than creating patches to allow old-style programming.
Believe me, it is worth your efforts.

Some time ago I've made an article and had discussion about it here (it's in Russian)
http://habrahabr.ru/blogs/cpp/111259/

Subject: Re: revised ownership change
Posted by kohait00 on Mon, 23 May 2011 09:16:56 GMT

View Forum Message <> Reply to Message

i agree. will take the effort to read it, though living in germany i originate from kazachstan

the upp approach is worth gold (everything belongs somewhere) and some old habbits die hard..
that's why i decided to use a distinct interface class to manage ownership. this will make it esier
anyway.

I'm often tempted to drive upp towards the object base /polymorphism approach i.e. like in C# and
forget about upp hard type checks.. which is the source of it's beauty and speed.

any polumorphism should be handled extra, in the specific containers.

Subject: Re: revised ownership change
Posted by Lance on Mon, 06 Jun 2011 03:05:38 GMT

View Forum Message <> Reply to Message

Page 38 of 39 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32502#msg_32502
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32502
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32503#msg_32503
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32503
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32511#msg_32511
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32511
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32750#msg_32750
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32750
https://www.ultimatepp.org/forums/index.php

kohait00 wrote on Sun, 22 May 2011 21:58i think ispecially the Remove() call of an owned Ctrl is
a huge problem. since this would delete the Ctrl itself. if not, it would dangle. but there are a lot of
handling expecting the Ctrl to continue to exist after calling Remove() on it.

For example? Do you mean UPP library code relying on the continued existence of a control after
it's been removed from its parent, or, user code, as a common practice, may access a dynamic
control's properties after it's been removed (hence deleted) from its parent?

| agree the latter is an issue as it's against Upp programmer's habit.

| was really busy. | know there are lots of good stuff in the bazzar worth trying and learning, but |
will have to wait.

Subject: Re: revised ownership change
Posted by Lance on Mon, 06 Jun 2011 03:11:07 GMT

View Forum Message <> Reply to Message

Mindtraveller wrote on Mon, 23 May 2011 00:28I think U++ owning system is far more efficient
than ordinary approach. So | wouldn't recommend embed QT-style management of controls.

It is better learning better approaches than creating patches to allow old-style programming.
Believe me, it is worth your efforts.

Some time ago I've made an article and had discussion about it here (it's in Russian)
http://habrahabr.ru/blogs/cpp/111259/

True. With my limited experience with U++, | never need to dynamically allocate a control. A
common situation would be to create Ul from , eg., XML, but in that case, a dedicated container
like an hash map would be more efficient as it will be frequently required to access controls by
their names/IDs.

My believe is that it's of virtual no cost but may of some use some time.

Page 39 of 39 ---- Generated from Ut+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=5928&goto=32751#msg_32751
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32751
https://www.ultimatepp.org/forums/index.php

