
Subject: RGBA and ImageBuffer classes improve
Posted by tojocky on Thu, 05 May 2011 19:02:22 GMT
View Forum Message <> Reply to Message

Hello,

I propose to improve class RGBA like:

template<typename T>
struct RGBA_T : Moveable<RGBA_T<T> > {
 T b, g, r, a;
};
typedef RGBA_T<byte> RGBA;

And classe ImageBuffer Like:
in .h file

template<class T>
class ImageBuffer_T : NoCopy {
	mutable int kind;
	Size size;
	Buffer<RGBA_T<T> > pixels;
	Point hotspot;
	Point spot2;
	Size dots;

	void Set(Image& img);
	void DeepCopy(const ImageBuffer_T<byte>& img);

	RGBA_T<T>* Line(int i) const;
	RGBA* Line8(int i) const;
	friend void DropPixels___(ImageBuffer_T<T>& b) { b.pixels.Clear(); }

	friend class Image;

public:
	void SetKind(int k) { kind = k; }
	int GetKind() const { return kind; }
	int ScanKind() const;
	int GetScanKind() const { return kind == IMAGE_UNKNOWN ? ScanKind() : kind; }

	void SetHotSpot(Point p) { hotspot = p; }
	Point GetHotSpot() const { return hotspot; }

	void Set2ndSpot(Point p) { spot2 = p; }
	Point Get2ndSpot() const { return spot2; }

Page 1 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32277#msg_32277
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32277
https://www.ultimatepp.org/forums/index.php

	
	void SetHotSpots(const Image& src);

	void SetDots(Size sz) { dots = sz; }
	Size GetDots() const { return dots; }
	void SetDPI(Size sz);
	Size GetDPI();

	Size GetSize() const { return size; }
	int GetWidth() const { return size.cx; }
	int GetHeight() const { return size.cy; }
	int GetLength() const { return size.cx * size.cy; }

	RGBA *operator[](int i) { return Line8(i); }
	const RGBA *operator[](int i) const { return Line8(i); }
	RGBA *operator~();
	operator RGBA*();
	operator RGBA_T<uint16>*();
	operator RGBA_T<uint32>*();
	const RGBA *operator~() const;
	operator const RGBA*() const;

	operator const RGBA_T<uint16>*() const;

	operator const RGBA_T<uint32>*() const;

	void Create(int cx, int cy);
	void Create(Size sz) { Create(sz.cx, sz.cy); }
	bool IsEmpty() const { return (size.cx | size.cy) == 0; }
	void Clear() { Create(0, 0); }

	void operator=(Image& img);
	void operator=(ImageBuffer_T<byte>& img);

	ImageBuffer_T() { Create(0, 0); }
	ImageBuffer_T(int cx, int cy) { Create(cx, cy); }
	ImageBuffer_T(Size sz) { Create(sz.cx, sz.cy); }
	ImageBuffer_T(Image& img);
	ImageBuffer_T(ImageBuffer_T<byte>& b);
// BW, defined in CtrlCore:
	ImageBuffer_T(ImageDraw& iw);
};

typedef ImageBuffer_T<byte> ImageBuffer;

template<class T>
void ImageBuffer_T<T>::SetHotSpots(const Image& src){
	SetHotSpot(src.GetHotSpot());

Page 2 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	Set2ndSpot(src.Get2ndSpot());
}

template<class T>
void ImageBuffer_T<T>::Create(int cx, int cy){
	ASSERT(cx >= 0 && cy >= 0);
	size.cx = cx;
	size.cy = cy;
	pixels.Alloc(GetLength());
#ifdef _DEBUG
	RGBA_T<T> *s = pixels;
	RGBA_T<T> *e = pixels + GetLength();
	byte a = 0;
	while(s < e) {
		s->a = a;
		a = ~a;
		s->r = 255;
		s->g = s->b = 0;
		s++;
	}
#endif
	kind = IMAGE_UNKNOWN;
	spot2 = hotspot = Point(0, 0);
	dots = Size(0, 0);
}

template<class T>
void ImageBuffer_T<T>::DeepCopy(const ImageBuffer& img){
	Create(img.GetSize());
	SetHotSpot(img.GetHotSpot());
	Set2ndSpot(img.Get2ndSpot());
	SetDots(img.GetDots());
	memcpy(pixels, img.pixels, GetLength() * sizeof(RGBA));
}

template<class T>
void ImageBuffer_T<T>::Set(Image& img){
	if(img.data)
		if(img.data->refcount == 1) {
			size = img.GetSize();
			kind = IMAGE_UNKNOWN;
			hotspot = img.GetHotSpot();
			spot2 = img.Get2ndSpot();
			dots = img.GetDots();
			pixels = img.data->buffer.pixels;
			img.Clear();
		}
		else {

Page 3 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

			DeepCopy(img.data->buffer);
			kind = IMAGE_UNKNOWN;
			img.Clear();
		}
	else
		Create(0, 0);
}

template<class T>
void ImageBuffer_T<T>::operator=(Image& img){
	Clear();
	Set(img);
}

template<class T>
void ImageBuffer_T<T>::operator=(ImageBuffer& img){
	Clear();
	Image m = img;
	Set(m);
}

template<class T>
ImageBuffer_T<T>::ImageBuffer_T(Image& img){
	Set(img);
}

template<class T>
ImageBuffer_T<T>::ImageBuffer_T(ImageBuffer& b){
	kind = b.kind;
	size = b.size;
	dots = b.dots;
	pixels = b.pixels;
	hotspot = b.hotspot;
	spot2 = b.spot2;
}

template<class T>
void ImageBuffer_T<T>::SetDPI(Size dpi){
	dots.cx = int(600.*size.cx/dpi.cx);
	dots.cy = int(600.*size.cy/dpi.cy);
}

template<class T>
Size ImageBuffer_T<T>::GetDPI(){
	return Size(dots.cx ? int(600.*size.cx/dots.cx) : 0, dots.cy ? int(600.*size.cy/dots.cy) : 0);
}

and .cpp

Page 4 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

template<class T>
RGBA_T<T>* ImageBuffer_T<T>::Line(int i) const{
	ASSERT(i >= 0 && i < size.cy); return (RGBA_T<T> *)~pixels + i * size.cx;
}

template<>
RGBA* ImageBuffer_T<byte>::Line8(int i) const{
	ASSERT(i >= 0 && i < size.cy); return (RGBA *)~pixels + i * size.cx;
}

template<>
RGBA* ImageBuffer_T<byte>::operator~(){
	return pixels;
}

template<>
ImageBuffer_T<byte>::operator RGBA*(){
	return pixels;
}

template<>
ImageBuffer_T<uint16>::operator RGBA_T<uint16>*(){
	return pixels;
}

template<>
ImageBuffer_T<uint32>::operator RGBA_T<uint32>*(){
	return pixels;
}

template<>
const RGBA* ImageBuffer_T<byte>::operator~() const{
	return pixels;
}

template<>
ImageBuffer_T<byte>::operator const RGBA*() const{
	return pixels;
}

//uint16
template<class T>
ImageBuffer_T<T>::operator const RGBA_T<uint16>*() const{
	return pixels;
}

Page 5 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

template<>
ImageBuffer_T<uint16>::operator const RGBA_T<uint16>*() const{
	return pixels;
}

//uint32
template<class T>
ImageBuffer_T<T>::operator const RGBA_T<uint32>*() const{
	return pixels;
}

template<>
ImageBuffer_T<uint32>::operator const RGBA_T<uint32>*() const{
	return pixels;
}

template<>
int ImageBuffer_T<byte>::ScanKind() const{
	bool a255 = false;
	bool a0 = false;
	const RGBA *s = pixels;
	const RGBA *e = s + GetLength();
	while(s < e) {
		if(s->a == 0)
			a0 = true;
		else
		if(s->a == 255)
			a255 = true;
		else
			return IMAGE_ALPHA;
		s++;
	}
	return a255 ? a0 ? IMAGE_MASK : IMAGE_OPAQUE : IMAGE_EMPTY;
}

The proposed realization is not finished yet, but the first worked step is done!

I use this classes to read image in 16/32 bits.

Subject: Re: RGBA and ImageBuffer classes improve
Posted by koldo on Thu, 05 May 2011 19:31:33 GMT
View Forum Message <> Reply to Message

Hello Ion

It seems a good idea. However could it reduce the speed of actual code?

Page 6 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32280#msg_32280
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32280
https://www.ultimatepp.org/forums/index.php

Subject: Re: RGBA and ImageBuffer classes improve
Posted by tojocky on Fri, 06 May 2011 06:11:28 GMT
View Forum Message <> Reply to Message

koldo wrote on Thu, 05 May 2011 22:31Hello Ion

It seems a good idea. However could it reduce the speed of actual code?

I didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:
RGBA16, RGAB32, ImageBuffer16 and ImageBuffer32.

Subject: Re: RGBA and ImageBuffer classes improve
Posted by koldo on Fri, 06 May 2011 06:29:01 GMT
View Forum Message <> Reply to Message

tojocky wrote on Fri, 06 May 2011 08:11koldo wrote on Thu, 05 May 2011 22:31Hello Ion

It seems a good idea. However could it reduce the speed of actual code?

I didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:
RGBA16, RGAB32, ImageBuffer16 and ImageBuffer32.
The ideas are good.

Could you do a simple speed test?

Subject: Re: RGBA and ImageBuffer classes improve
Posted by tojocky on Fri, 06 May 2011 10:41:03 GMT
View Forum Message <> Reply to Message

koldo wrote on Fri, 06 May 2011 09:29tojocky wrote on Fri, 06 May 2011 08:11koldo wrote on
Thu, 05 May 2011 22:31Hello Ion

It seems a good idea. However could it reduce the speed of actual code?

I didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:
RGBA16, RGAB32, ImageBuffer16 and ImageBuffer32.
The ideas are good.

Could you do a simple speed test?

Page 7 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32281#msg_32281
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32281
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32282#msg_32282
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32282
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32290#msg_32290
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32290
https://www.ultimatepp.org/forums/index.php

I will, but not know.
Now I have a urgent project that I should to finish.

P.S. I attached my work with RGAB16, and ImageBuffer16. It is better to create separate classes.

File Attachments
1) ImageView_Autolevel.zip, downloaded 350 times

Page 8 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3222
https://www.ultimatepp.org/forums/index.php

