Subject: RGBA and ImageBuffer classes improve
Posted by tojocky on Thu, 05 May 2011 19:02:22 GMT

View Forum Message <> Reply to Message

Hello,
| propose to improve class RGBA like:

template<typename T>

struct RGBA_T : Moveable<RGBA_T<T> > {
Thb,g, 1, a;

3

typedef RGBA T<byte> RGBA;

And classe ImageBuffer Like:
in .h file

template<class T>

class ImageBuffer T : NoCopy {
mutable int kind,;

Size size;
Buffer<RGBA_T<T> > pixels;
Point hotspot;

Point spot2;

Size dots;

void Set(Image& img);
void DeepCopy(const ImageBuffer_T<byte>& img);

RGBA_T<T>* Line(inti) const;
RGBA* Line8(int i) const;
friend void DropPixels__ (ImageBuffer_T<T>& b) { b.pixels.Clear(); }

friend class Image;

public:

void SetKind(int k) {kind = k; }

int GetKind() const { return kind; }

int ScanKind() const;

int GetScanKind() const { return kind == IMAGE_UNKNOWN ? ScanKind() : kind; }
void SetHotSpot(Point p) { hotspot = p; }

Point GetHotSpot() const { return hotspot; }

void Set2ndSpot(Point p) {spot2 =p; }

Point Get2ndSpot() const { return spot2; }

Page 1 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32277#msg_32277
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32277
https://www.ultimatepp.org/forums/index.php

void SetHotSpots(const Image& src);

void SetDots(Size sz) {dots =sz;}
Size GetDots() const { return dots; }
void SetDPI(Size sz);

Size GetDPI();

Size GetSize() const {return size; }

int GetWidth() const { return size.cx; }

int GetHeight() const { return size.cy; }

int GetLength() const { return size.cx * size.cy; }
RGBA *operator[](int i) { return Line8(i); }

const RGBA *operator[](int i) const { return Line8(i); }
RGBA *operator~();

operator RGBA*();

operator RGBA_T<uint16>*();

operator RGBA_T<uint32>*();

const RGBA *operator~() const;

operator const RGBA*() const;

operator const RGBA_T<uint16>*() const;
operator const RGBA_T<uint32>*() const;

void Create(int cx, int cy);

void Create(Size sz) { Create(sz.cx, sz.cy); }
bool IsEmpty() const {return (size.cx | size.cy) == 0; }
void Clear() { Create(0, 0); }

void operator=(Image& img);
void operator=(ImageBuffer_T<byte>& img);

ImageBuffer_T() { Create(0, 0); }
ImageBuffer_T(int cx, int cy) { Create(cx, cy); }
ImageBuffer_T(Size sz) { Create(sz.cx, sz.cy); }

ImageBuffer_T(Image& img);
ImageBuffer_T(ImageBuffer_T<byte>& b);
Il BW, defined in CtriCore:
ImageBuffer_T(ImageDrawé& iw);

J§
typedef ImageBuffer_T<byte> ImageBuffer;
template<class T>

void ImageBuffer_T<T>::SetHotSpots(const Image& src){
SetHotSpot(src.GetHotSpot());

Page 2 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Set2ndSpot(src.Get2ndSpot());
}

template<class T>

void ImageBuffer T<T>::Create(int cx, int cy){
ASSERT(cx >= 0 && cy >=0);

Size.cX = CX;

size.cy = cy;,

pixels.Alloc(GetLength());

#ifdef DEBUG

RGBA_T<T> *s = pixels;

RGBA_T<T> *e = pixels + GetLength();

byte a =0;
while(s < e) {
s->a = a;
a=-~a,
S->r = 255;
s->g =s->b =0;
S++;

}

#endif

kind = IMAGE_UNKNOWN,;
spot2 = hotspot = Point(0, 0);
dots = Size(0, 0);

}

template<class T>

void ImageBuffer_T<T>::DeepCopy(const ImageBuffer& img){
Create(img.GetSize());

SetHotSpot(img.GetHotSpot());
Set2ndSpot(img.Get2ndSpot());

SetDots(img.GetDots());

memcpy(pixels, img.pixels, GetLength() * sizeof(RGBA));

}

template<class T>
void ImageBuffer_T<T>::Set(Image& img){
if(img.data)
if(img.data->refcount == 1) {
size = img.GetSize();
kind = IMAGE_UNKNOWN,;
hotspot = img.GetHotSpot();
spot2 = img.Get2ndSpot();
dots = img.GetDots();
pixels = img.data->buffer.pixels;
img.Clear();
}

else {

Page 3 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

DeepCopy(img.data->buffer);
kind = IMAGE_UNKNOWN,;
img.Clear();

}

else

Create(0, 0);

}

template<class T>

void ImageBuffer_T<T>::.operator=(Image& img){
Clear();

Set(img);

}

template<class T>

void ImageBuffer_T<T>:.operator=(ImageBuffer& img){
Clear();

Image m =img;

Set(m);

}

template<class T>
ImageBuffer_T<T>::ImageBuffer_T(Image& img){
Set(img);

}

template<class T>
ImageBuffer_T<T>::ImageBuffer_T(ImageBuffer& b){

kind = b.kind;
size = b.size;
dots = b.dots;

pixels = b.pixels;
hotspot = b.hotspot;
spot2 = b.spot2;

}

template<class T>

void ImageBuffer_ T<T>::SetDPI(Size dpi){
dots.cx = int(600.*size.cx/dpi.cx);

dots.cy = int(600.*size.cy/dpi.cy);

}

template<class T>
Size ImageBuffer_T<T>::GetDPI(){
return Size(dots.cx ? int(600.*size.cx/dots.cx) : 0, dots.cy ? int(600.*size.cy/dots.cy) : 0);

}
and .cpp

Page 4 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

template<class T>
RGBA_T<T>* ImageBuffer_T<T>::Line(int i) const{
ASSERT(i >= 0 && i < size.cy); return (RGBA_T<T> *)~pixels + i * size.cx;

}

template<>
RGBA* ImageBuffer_T<byte>::Line8(int i) const{
ASSERT(i >= 0 && i < size.cy); return (RGBA *)~pixels + i * size.cx;

}

template<>
RGBA* ImageBuffer_T<byte>::operator~(){
return pixels;

}

template<>
ImageBuffer_T<byte>::operator RGBA*(){
return pixels;

}

template<>
ImageBuffer_T<uintl6>::.operator RGBA T<uint16>*(){
return pixels;

}

template<>
ImageBuffer_T<uint32>::operator RGBA_T<uint32>*(){
return pixels;

}

template<>
const RGBA* ImageBuffer_T<byte>::operator~() const{
return pixels;

}

template<>
ImageBuffer_T<byte>::operator const RGBA*() const{
return pixels;

}

/luint16

template<class T>

ImageBuffer_T<T>::operator const RGBA_T<uint16>*() const{
return pixels;

}

Page 5 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

template<>
ImageBuffer_T<uint16>::operator const RGBA_T<uint16>*() const{
return pixels;

}

/Nuint32

template<class T>

ImageBuffer_T<T>:.operator const RGBA_T<uint32>*() const{
return pixels;

}

template<>
ImageBuffer_T<uint32>::operator const RGBA_T<uint32>*() const{
return pixels;

}

template<>

int ImageBuffer_T<byte>::ScanKind() const{
bool a255 = false;

bool a0 = false;

const RGBA *s = pixels;

const RGBA *e = s + GetLength();

while(s < e) {

if(s->a == 0)

a0 = true;

else

if(s->a == 255)

a255 =true;

else

return IMAGE_ALPHA,;
S++;

}
return a255 ? a0 ? IMAGE_MASK : IMAGE_OPAQUE : IMAGE_EMPTY;

}

The proposed realization is not finished yet, but the first worked step is done!

| use this classes to read image in 16/32 bits.

Subject: Re: RGBA and ImageBuffer classes improve
Posted by koldo on Thu, 05 May 2011 19:31:33 GMT

View Forum Message <> Reply to Message

Hello lon

It seems a good idea. However could it reduce the speed of actual code?

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32280#msg_32280
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32280
https://www.ultimatepp.org/forums/index.php

Subject: Re: RGBA and ImageBuffer classes improve
Posted by tojocky on Fri, 06 May 2011 06:11:28 GMT

View Forum Message <> Reply to Message

koldo wrote on Thu, 05 May 2011 22:31Hello lon
It seems a good idea. However could it reduce the speed of actual code?
| didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:
RGBA16, RGAB32, ImageBufferl6 and ImageBuffer32.

Subject: Re: RGBA and ImageBuffer classes improve
Posted by koldo on Fri, 06 May 2011 06:29:01 GMT

View Forum Message <> Reply to Message

tojocky wrote on Fri, 06 May 2011 08:11koldo wrote on Thu, 05 May 2011 22:31Hello lon
It seems a good idea. However could it reduce the speed of actual code?

| didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:

RGBA16, RGAB32, ImageBufferl6 and ImageBuffer32.

The ideas are good.

Could you do a simple speed test?

Subject: Re: RGBA and ImageBuffer classes improve
Posted by tojocky on Fri, 06 May 2011 10:41:03 GMT

View Forum Message <> Reply to Message

koldo wrote on Fri, 06 May 2011 09:29tojocky wrote on Fri, 06 May 2011 08:11koldo wrote on
Thu, 05 May 2011 22:31Hello lon

It seems a good idea. However could it reduce the speed of actual code?
| didn't feel slowdown speed.

Another solution is to keep old classes as is, and add new classes:
RGBA16, RGAB32, ImageBufferl6 and ImageBuffer32.

The ideas are good.

Could you do a simple speed test?

Page 7 of 8 ---- Generated from Ut+ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32281#msg_32281
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32281
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32282#msg_32282
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32282
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=595
https://www.ultimatepp.org/forums/index.php?t=rview&th=6008&goto=32290#msg_32290
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=32290
https://www.ultimatepp.org/forums/index.php

| will, but not know.
Now | have a urgent project that | should to finish.

P.S. | attached my work with RGAB16, and ImageBufferl6. It is better to create separate classes.

File Attachnents

1) I'mageVi ew Aut ol evel . zi p, downl oaded 350 ti nes

Page 8 of 8 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3222
https://www.ultimatepp.org/forums/index.php

