
Subject: C++11
Posted by Mindtraveller on Wed, 12 Oct 2011 09:20:31 GMT
View Forum Message <> Reply to Message

http://en.wikipedia.org/wiki/C%2B%2B11
New version of C++ is finally out.
What do you think about it?
Will it change anything in how we use U++?

Subject: Re: C++11
Posted by mirek on Fri, 14 Oct 2011 10:18:09 GMT
View Forum Message <> Reply to Message

Mindtraveller wrote on Wed, 12 October 2011 05:20http://en.wikipedia.org/wiki/C%2B%2B11
New version of C++ is finally out.
What do you think about it?
Will it change anything in how we use U++?

Unlikely. The closest thing that might have been useful for us is r-value references, which has the
potential of replacing pick_. Unfortunately it does not compose, so directly replacing pick_ with &&
would break existing code. I do not know, MAYBE it would be worth it, after all there is only a
couple of places where composition of pick is really used, OTOH fixing them would be pretty
annoying.

What I mean by composition:

struct Foo {
 int a;
 Vector<int> foo;
};

in U++, this struct has well defined computer generated pick constructor and pick assignment.

Would pick_ be replaced by &&, it would have neither. Programmer would have to define special
Foo(&&) constructor and operator=(&&). With some structs with dozen members, it would be
tedious and error-prone.

Mirek

Subject: Re: C++11
Posted by lectus on Sat, 03 Dec 2011 11:03:08 GMT
View Forum Message <> Reply to Message

Interesting.
What compilers already support C++11?

Page 1 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=34034#msg_34034
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=34034
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=34072#msg_34072
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=34072
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=223
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=34647#msg_34647
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=34647
https://www.ultimatepp.org/forums/index.php

Subject: Re: C++11
Posted by dolik.rce on Sun, 24 Jun 2012 07:51:48 GMT
View Forum Message <> Reply to Message

Hi everyone,

Allan McRae (one of the major devs of Arch Linux) wrote a series of nice and short articles about
C++11 features. They're written for average joe programmer and I learned quite some new thing
from them about the new standard. I really recommend them to anyone who haven't yet had the
time yet to study C++11 changelist

From the features discussed in the first 5 articles, two would be IMHO useful for U++:

Initializer lists would be definitely a neat feature to have in U++ containers. We could than write
things like "Vector v {10,3,12,8};" instead of "Vector v; v.Add(10); v.Add(3); v.Add(12); v.Add(8);".
And if I understand correctly, we could also add some methods to do stuff like
"v.Add({10,3,12,8});". The initializer_list works little bit similar to tuple, but it is syntactically much
simpler and readable. It should be pretty easy to implement in U++, with backward compatibility
assured by a flag.

Extern templates could speed up U++ compilation. The speedup should be significant for
non-BLITZ case and probably noticeable even with BLITZ on. There might be however problems
to implement a backward compatible usage of the extern templates...

As for the compiler support: GCC and Clang support is very good. I don't know about MSVC...

Best regards,
Honza

Subject: Re: C++11
Posted by mirek on Sun, 24 Jun 2012 10:50:54 GMT
View Forum Message <> Reply to Message

dolik.rce wrote on Sun, 24 June 2012 03:51We could than write things like "Vector v {10,3,12,8};"
instead of "Vector v; v.Add(10); v.Add(3); v.Add(12); v.Add(8);". And if I understand correctly, we
could

Well, you can also write, in "old" C++ and current U++

Vector v<int> = Vector<int>() << 10 << 3 << 12 << 8;

or

Vector v<int>;
v << 10 << 3 << 12 << 8;

which really is just a tiny bit more verbose (but right, it would run a bit slower than best C++11

Page 2 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36652#msg_36652
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36652
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36661#msg_36661
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36661
https://www.ultimatepp.org/forums/index.php

implementation).

For me, the C++11 feature I like the most is 'auto'. Anyway, generally, I still have feeling that
"polluting" U++ code with C++11 is not worth it for now. Perhaps in another 5 years...

Subject: Re: C++11
Posted by unodgs on Sun, 24 Jun 2012 11:02:36 GMT
View Forum Message <> Reply to Message

[quote title=mirek wrote on Sun, 24 June 2012 06:50]dolik.rce wrote on Sun, 24 June 2012 03:51
For me, the C++11 feature I like the most is 'auto'. Anyway, generally, I still have feeling that
"polluting" U++ code with C++11 is not worth it for now. Perhaps in another 5 years...

I would also adjust u++ containers to work with C++11 foreach.

Subject: Re: C++11
Posted by mirek on Sun, 24 Jun 2012 11:13:37 GMT
View Forum Message <> Reply to Message

[quote title=unodgs wrote on Sun, 24 June 2012 07:02]mirek wrote on Sun, 24 June 2012
06:50dolik.rce wrote on Sun, 24 June 2012 03:51
For me, the C++11 feature I like the most is 'auto'. Anyway, generally, I still have feeling that
"polluting" U++ code with C++11 is not worth it for now. Perhaps in another 5 years...

I would also adjust u++ containers to work with C++11 foreach.

Should not it work without adjusting? We do have begin/end defined already...

Mirek

Update: Confirmed

GUI_APP_MAIN
{
	Vector<int> v;
	v << 1 << 2 << 3;
	for(int& x: v)
		LOG(x);
}

Page 3 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=12
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36662#msg_36662
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36662
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36664#msg_36664
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36664
https://www.ultimatepp.org/forums/index.php

Subject: Re: C++11
Posted by unodgs on Sun, 24 Jun 2012 11:21:45 GMT
View Forum Message <> Reply to Message

Excellent! (I thought some kind of new interface must be implemented)

Subject: Re: C++11
Posted by dolik.rce on Sun, 24 Jun 2012 14:24:43 GMT
View Forum Message <> Reply to Message

mirek wrote on Sun, 24 June 2012 13:13
GUI_APP_MAIN
{
	Vector<int> v;
	v << 1 << 2 << 3;
	for(int& x: v)
		LOG(x);
}
Or even with auto:
GUI_APP_MAIN
{
	Vector<int> v;
	v << 1 << 2 << 3;
	for(auto& x: v)
		LOG(x);
}

I agree that the intializer list syntax provides the same functionality as already existing code. The
performance gain is not important because initialization shouldn't happen much in performance
oriented code (where one should generaly reuse existing containers as much as possible). OTOH
it is easy to read and I think the simplicity of it fits nice into U++. Also, the sooner people start
encountering c++11 code in real world examples, the sooner it gets widely adopted, so maybe we
could give a good example to the world It can't hurt, even if it stays semi-hidden under flag
USECXX11 (or similar) for a first few years. This is just my opinion, and I don't force it to anyone...
but I will probably starte experiment in this direction soon, and I will most probably try to show
here what I can come up with

Honza

Subject: Re: C++11
Posted by lectus on Tue, 26 Jun 2012 23:29:07 GMT
View Forum Message <> Reply to Message

Interesting.
I was testing this stuff and I had to add -std=c++0x to the compiler options
Looks like a very clean way to iterate through a container.

Page 4 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=12
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36665#msg_36665
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36665
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36671#msg_36671
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36671
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=223
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36703#msg_36703
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36703
https://www.ultimatepp.org/forums/index.php

Very handy indeed. I can say things like:

Vector<int> range(int x, int y) {
	Vector<int> v;
	for(int i=x; i<=y; i++)
		v.Add(i);
	return v;
}

...

for(auto x: range(0, 10))
		arrayCtrl1.Add(x);

Subject: Re: C++11
Posted by mirek on Thu, 28 Jun 2012 06:16:56 GMT
View Forum Message <> Reply to Message

BTW:

 http://blogs.msdn.com/b/vcblog/archive/2011/09/12/10209291.a spx

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 05:18:47 GMT
View Forum Message <> Reply to Message

For people who are interested in C++11, here is a pretty good book:

 https://www.dropbox.com/s/pwpinrlme0hzhxp/%28Overview.of.the
.New.C.%EF%BC%9AC.0x%29.Scott.Meyers.pdf

Subject: Re: C++11
Posted by nlneilson on Sun, 02 Dec 2012 07:35:38 GMT
View Forum Message <> Reply to Message

lectus wrote on Sat, 03 December 2011 03:03Interesting.
What compilers already support C++11?

MSVC 2012 compilers support C++11/c++0x

Page 5 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=36712#msg_36712
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36712
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38120#msg_38120
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38120
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=847
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38123#msg_38123
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38123
https://www.ultimatepp.org/forums/index.php

Having the auto setup for those compilers would be good.

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 14:08:26 GMT
View Forum Message <> Reply to Message

I think eventually U++ should get rid of pick_ and make use of rvalue reference instead. rvalue
reference solves the same problem pick_ saught to solve and is standard compliant, and behaves
more consistent across compilers: I believe pick_ is #define'd to different things on MSVC from on
g++, and to avoid conflicts, U++ has to introduce a dummy parameter for deep copy semantics.

Last time when I mentioned this, Mirek said something like pick_ had more degree of automation;
for the same purpose rvalue reference might involve more coding. But the benefit of switching
might overwhelm the cost. C++ programmers turning to U++ will appreciate the effort saved for
learning pick_ and will find the code easier to understand. U++ programmers don't have to speak
a special dialect when there is no compelling reason for that.

The only problem IMHO is the resources needed to implement the switch. It's bound to take a lot
of time and break a lot of user codes, unless somebody can write a parser to automate the
process.

Subject: Re: C++11
Posted by dolik.rce on Sun, 02 Dec 2012 15:04:20 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 02 December 2012 15:08I think eventually U++ should get rid of pick_ and
make use of rvalue reference instead. rvalue reference solves the same problem pick_ saught to
solve and is standard compliant, and behaves more consistent across compilers: I believe pick_ is
#define'd to different things on MSVC from on g++, and to avoid conflicts, U++ has to introduce a
dummy parameter for deep copy semantics.
Hi Lance,

If I understand both picking and rvalue references correctly, there is still a very valid reason to
keep using picking: Rvalue references work ONLY on temporary objects. In U++, you can use
picking on any object and even reuse it, assuming you clean it up after it has been picked,
typically by calling Clear() or by assigning content from another object. I think this can not be done
simply with rvalues.

Also, I believe that introduction of move semantics to C++11 standard will actually make it easier
to explain U++ pick to new programmers, because they will already be familiar with the concept.
We should just adapt the introductory documentation to explain how pick constructor is similar to
move constructor, what is different and how U++ further extends this concept.

Page 6 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38131#msg_38131
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38131
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38134#msg_38134
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38134
https://www.ultimatepp.org/forums/index.php

Honza

EDIT: After bit more reading, I found you can actually make it work with any object, using
std::move... Right now, that seems downright ugly and hackish to me I guess I need to read even
more before I can make my mind whether the switch to move semantics is a good or bad idea.

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 17:05:18 GMT
View Forum Message <> Reply to Message

Honza, you are right. A named object has to be std:move()'ed to communicate its moveable
(temporary) status to the compiler, even when it's declared as temporary (using &&). std::move
will appear a lot in new library code and user code as well, so people will get use to it soon.

You can do in move assignments or move constructors the same thing you used to do in pick
constructor and pick assignment, eg, mark the right hand object as picked.

Now we can do

Vector<int> b=std:move(anotherVectorIntInstance); // move construction;

//or
Vector<int> b=anotherVectorIntInstance; //copy construction or deep copy, instead of
Vector<int> b(anotherVectorIntInstance, 0); // using dummy param to signal the intention of deep
copy.

provide the underlying U++ facilities are modified using the rvalue reference language feature.

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 17:47:32 GMT
View Forum Message <> Reply to Message

And any object can be std::move()'ed to become moveable, no matter it's a temporary or not.

#include <iostream>
#include <string>
#include <algorithm>
#include <new>

using namespace std;

struct S

Page 7 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38143#msg_38143
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38143
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38144#msg_38144
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38144
https://www.ultimatepp.org/forums/index.php

{
	S(){}
	S(const S& rhs) : text(rhs.text){}
	S(S&& rhs){
		struct T{ char _[sizeof(S)]; };
		std::swap(reinterpret_cast<T&>(*this),
			reinterpret_cast<T&>(rhs)
);
	}

	S& operator=(const S& rhs)
	{
		this->~S();
		return *new(this)S(rhs);
	}

	S& operator=(S&& rhs)
	{
		this->~S();
		// std::move() is necessary even when rhs is declared as temoprary
		return *new(this)S(move(rhs));
	}
	
	string text;
		
};
ostream& operator<<(ostream& os, const S& s)
{
	return os<<s.text<<endl;
}

S global;

int main()
{
	global.text="This is the global text";
	cout<<global;
	
	S a;
	a.text="This is object a";
	
	//
	//
	S b(a);

Page 8 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	cout<<"after S b(a), now is:"<<b<<"and <a> is:"<<a;
	
	S c(std::move(global)); // use move constructor
	cout<<"after S c=std::move(global), now <c> is:"<<c<<"and <global> is:"<<global;
	
}

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 18:30:49 GMT
View Forum Message <> Reply to Message

If U++ will adopt rvalue references, will it create the possibility of getting rid of Vector and many
other containers/algorithms? Mirek will know better. My feeling is that in many a situation, the
answer probably is 'yes'. If that is true, moving code into and out of U++ could be greatly
simplified.

Subject: Re: C++11
Posted by dolik.rce on Sun, 02 Dec 2012 19:12:45 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 02 December 2012 19:30If U++ will adopt rvalue references, will it create the
possibility of getting rid of Vector and many other containers/algorithms? Mirek will know better.
My feeling is that in many a situation, the answer probably is 'yes'. If that is true, moving code into
and out of U++ could be greatly simplified.Actually many of the containers are already compatibly
with STL (search for STL_*_COMPATIBILITY in Core). So things wouldn't get much easier than
they are now. Another thing is that there are not only differences in move semantics, but also in
algorithms used, interfaces and possibly other, so there are still reasons to keep the U++
containers. Not even to mention that you have to think about backwards compatibility

Honza

Subject: Re: C++11
Posted by Lance on Sun, 02 Dec 2012 20:00:08 GMT
View Forum Message <> Reply to Message

Hi Honza:

Thanks. I didn't know that.

It's probably better not to touch it at all, or add some additional interfaces to incorporate rvalue
reference so that existing code doesn't break. But in that way copy construction/assignment still
means pick_, and for deep copy, so that a class moving into U++ may have to revise its related
constructors/= to behave correctly in U++.

Page 9 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38147#msg_38147
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38147
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38149#msg_38149
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38149
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38150#msg_38150
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38150
https://www.ultimatepp.org/forums/index.php

A class not written with pick_ in mind will(or may?) not work correctly with Upp::Vector<>, even if it
meets all the interface requirements superficially.

I agree benefit gain doesn't seem to justify the work involved and problems it may created.

Subject: Re: C++11
Posted by mirek on Mon, 03 Dec 2012 10:04:29 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 02 December 2012 15:00
A class not written with pick_ in mind will(or may?) not work correctly with Upp::Vector<>, even if it
meets all the interface requirements superficially.

Actually, that is not true. pick_ is in no way related with generic requirement of Vector elements
(only 2-3 methods require it).

Please note that pick semantics and Moveable are two very different things.

pick indeed is a variant of rvalue and it might have sense to replace it with r-value. Unfortunately,
rvalue lacks composition rules, which means that it has to be reimplemented for any composite
type, while pick generates compiler generated composite pick operations without problems. How
much more code it would mean in practice is something that I plan to test is some branch in
future. But e.g. for something like RichTxt::Para, it will be nasty.

Anyway, pick is not used for performance reasons in Vector. Moveable is. And that is still a bit
ahead than pick/&&.

Pick is rather interface issue, allows you to pass objects from place to place without copying them
(which do not even has to be available).

Mirek

Subject: Re: C++11
Posted by mirek on Mon, 03 Dec 2012 10:10:25 GMT
View Forum Message <> Reply to Message

Lance wrote on Sun, 02 December 2012 13:30If U++ will adopt rvalue references, will it create the
possibility of getting rid of Vector and many other containers/algorithms?

Note: You can use most STL algorithms with U++ containers now, as long as elements satisfy
STL requirements, and vice versa.

Page 10 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38171#msg_38171
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38171
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38172#msg_38172
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38172
https://www.ultimatepp.org/forums/index.php

However, sometimes U++ algorithms are better suited for U++ concrete types (and, again, vice
versa). For example, U++ Sort is fater than than std::sort for Vector<String>, but slower for
std::vector<std::string> (~30%), as there are subtle choices in algorithm that can favor one or
another set of types.

Mirek

Subject: Re: C++11
Posted by Lance on Mon, 03 Dec 2012 23:55:48 GMT
View Forum Message <> Reply to Message

Thanks Mirek. I got it.

So U++'s Vector would still outperform std::vector significantly for classes have move constructor
and move assignment defined?

Subject: Re: C++11
Posted by mirek on Tue, 04 Dec 2012 07:08:03 GMT
View Forum Message <> Reply to Message

Lance wrote on Mon, 03 December 2012 18:55Thanks Mirek. I got it.

So U++'s Vector would still outperform std::vector significantly for classes have move constructor
and move assignment defined?

Well, it depends on many factors, but generally yes.

The difference is that when expanding std::vector, the code still has to iterate through all elements
and move them (albeit using &&). Vector simply performs memcpy on raw data.

Now it is possible that the std::vector iteration could in the end be optimized by compiler to
something like memcpy, as long as compiler sees the inlined move contructor, in that case the
performace should be similar. But in the end, Vector always does memcpy

Mirek

Subject: Re: C++11
Posted by Lance on Tue, 19 Mar 2013 02:24:04 GMT
View Forum Message <> Reply to Message

C++11 compiler support shootout: Visual Studio, GCC, Clang, Intel

 http://cpprocks.com/c11-compiler-support-shootout-visual-stu dio-gcc-clang-intel/

Page 11 of 11 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38182#msg_38182
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38182
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=38183#msg_38183
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38183
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=6307&goto=39472#msg_39472
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39472
https://www.ultimatepp.org/forums/index.php

