
Subject: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by Wolfgang on Wed, 09 May 2012 10:17:36 GMT
View Forum Message <> Reply to Message

I want to know how long (in ms) it takes to get a response from my server through a udp
connection. (from a ping)

header:
Time lastPingRequest;

send method:
bool hcan::doSend(uint16 what, CanFrame& frame)
{
 if (!service.prepFrame(what, frame))
 return false;
 if (what == CanMethod::PING_REQUEST)
 lastPingRequest = GetSysTime();

 if (urc.RawSend(frame))
 ...
}

receive method:
case CanMethod::PING_REPLAY:
{
 int64 pingLatency = GetSysTime() - ToTime(lastPingRequest);
 String tLogMsg = "Ping latency: ";
 tLogMsg << AsString(pingLatency);
 Log(2,tLogMsg);
}

But this returns me something like:
Ping latency: 43909
Ping latency: 44138

I think I have more than one fault in my try to get the time... but I found nothing that I could
understand to RTIMING etc.

Can someone give me a small example how to do?

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by dolik.rce on Wed, 09 May 2012 11:34:11 GMT
View Forum Message <> Reply to Message

Hi Wolfgang,

Page 1 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1241
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36180#msg_36180
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36180
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36184#msg_36184
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36184
https://www.ultimatepp.org/forums/index.php

GetSysTime() returns Time, which works with resolution in seconds. That is not really helpful if
you want to track network actions that happen in milliseconds.

What you want to use is GetTickCount() which returns number of milliseconds since epoch.
Unfortunatelly, it returns dword value, which means it overflows every 49.7 days. So you might get
weird results every now and then On windows this can be fixed by using GetTickCount64(). On
other platforms, there is no such function in U++ right now.

Anyway, GetTickCount() should be fine for your purpose. Here is simple example: #include
<Core/Core.h>
using namespace Upp;

dword start;

void func_a(){
	start = GetTickCount();
};

void func_b(){
	LOG("Time: " << (GetTickCount()-start) << " ms");
};

CONSOLE_APP_MAIN{
	func_a();
	Sleep(1234);
	func_b();
}

Just for completeness: *TIMING() macros do something slightly different. They measure how long
and how often some block of code is executed. E.g. RTIMING("some_label"){ DoSomething(); }
will measure how long it took to execute DoSomething() and how many times it was executed
from this exact place. The results are then written in log, together with some statistics.

Best regards,
Honza

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by Wolfgang on Wed, 09 May 2012 11:44:43 GMT
View Forum Message <> Reply to Message

Okay, thank you.
Hadn't thought that it is that easy!

The "problem" with overflowing every 2^32ms isn't really a problem for me with time periods below
1000ms.

Page 2 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1241
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36185#msg_36185
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36185
https://www.ultimatepp.org/forums/index.php

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by cbpporter on Wed, 09 May 2012 13:26:09 GMT
View Forum Message <> Reply to Message

The real problem with GetTickCount is the resolution. I find it way too low for most practical
purposes, because two close measurements will almost always return 0, 15 or 16 ms.

I don't have a proper solution at hand right now, but this should work fairly well:
class HRTimer {
private:
 LARGE_INTEGER start;

 LARGE_INTEGER stop;

 double frequency;

public:
 HRTimer() {
 frequency = GetFrequency();
 }

 double GetFrequency();
 void StartTimer();
 double StopTimer();
};

double HRTimer::GetFrequency(void) {
 LARGE_INTEGER proc_freq;

 if (!::QueryPerformanceFrequency(&proc_freq)) {
 ASSERT(0);
 }

 return proc_freq.QuadPart;
}

void HRTimer::StartTimer(void) {
 DWORD_PTR oldmask = ::SetThreadAffinityMask(::GetCurrentThread(), 0);

 ::QueryPerformanceCounter(&start);

 ::SetThreadAffinityMask(::GetCurrentThread(), oldmask);
}

double HRTimer::StopTimer(void) {
 DWORD_PTR oldmask = ::SetThreadAffinityMask(::GetCurrentThread(), 0);

 ::QueryPerformanceCounter(&stop);

Page 3 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36186#msg_36186
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36186
https://www.ultimatepp.org/forums/index.php

 ::SetThreadAffinityMask(::GetCurrentThread(), oldmask);

 return ((stop.QuadPart - start.QuadPart) / frequency);
}

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by Wolfgang on Wed, 09 May 2012 13:48:56 GMT
View Forum Message <> Reply to Message

hmm, looks interessting.
Isn't this a little bit to time consuming?

I'll try later if this would do the job better for me but with the "simple" GetTickCount I get values
between 2 and ~60ms for a ping packet from my app to my local server - and this seems to be ok,
for me?!

But thanks anyway for your answer, its quite nice to see another way with a higher resolution.
Maybe I'll need it in the future..

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by dolik.rce on Wed, 09 May 2012 16:07:13 GMT
View Forum Message <> Reply to Message

You are right cbporter, for very short times it is not precise enough. Also it can depend on the way
compiler optimizes the code, I think. If one just needs to now if it takes 10ms or 100ms to send a
packet, it is accurate enough

IMHO the best way to achieve good resolution is usually to perform the task many times and
measure total time, averaging it later - that is the way TIMING() does it. Using this trick you can
get resolution in microseconds, assuming there is not too big deviation between the lengths of
single actions.

Honza

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by Didier on Wed, 09 May 2012 20:23:11 GMT
View Forum Message <> Reply to Message

I use this to measure timings, it works in linux and windows.

Timing.h

#ifdef WIN32

Page 4 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1241
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36188#msg_36188
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36188
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36189#msg_36189
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36189
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36190#msg_36190
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36190
https://www.ultimatepp.org/forums/index.php

	#include <Windows.h>
	class windowsTiming
	{
		public:
			windowsTiming(void);
		
		public:
			typedef struct
			{
			 signed __int64 nTicksCnt;
			} timeType;
		
			inline double diff_ms(timeType& p_start, timeType& p_end)
			{
				return (double(p_end.nTicksCnt-p_start.nTicksCnt)/double(m_TickPerSecond)*1000.);
			};
			
			inline timeType getTime(void)
			{
				timeType res;
				QueryPerformanceCounter((LARGE_INTEGER*)&res.nTicksCnt);
				return res;
			};
	
		private:
			signed __int64 m_TickPerSecond;
	};

	typedef windowsTiming HWTiming;

#else
	#include <time.h>
	class LinuxTiming {
		public:
			LinuxTiming() {};
			
		public:
			typedef timespec timeType;
			
			static inline timeType getTime()
			{
				timeType t;
				clock_gettime(CLOCK_REALTIME, &t);
				return t;
			}
			
			static inline double diff_ms(timeType& t1, timeType& t2)
			{

Page 5 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

				return ((t2.tv_sec-t1.tv_sec)*1000.0 + (t2.tv_nsec-t1.tv_nsec)/1000000.0);
			}
	};

	typedef LinuxTiming HWTiming;
#endif

Timing.c

#ifdef WIN32
		windowsTiming::windowsTiming(void)
		{
			QueryPerformanceFrequency((LARGE_INTEGER*)&m_TickPerSecond);
		};
#endif

To use it in a cross plateform way, do the following:

HWTiming timeMeasurer;

HWTiming::timeType startTime = timeMeasurer.getTime();

.... do you're thing !-)

HWTiming::timeType endTime = timeMeasurer.getTime();

double delta = timeMeasurer.diff_ms(endTime, startTime);

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by dolik.rce on Fri, 11 May 2012 18:23:24 GMT
View Forum Message <> Reply to Message

I just accidentally stumbled upon the new C++11 way to measure times. With <chrono> header,
you can do something like this:
#include <chrono> //requires -std=c++11

#include <Core/Core.h>
using namespace Upp;

CONSOLE_APP_MAIN{
	auto start = std::chrono::high_resolution_clock::now();
	Sleep(1); //execute your code here
	auto duration = std::chrono::high_resolution_clock::now() - start;

Page 6 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36202#msg_36202
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36202
https://www.ultimatepp.org/forums/index.php

	auto result=std::chrono::duration_cast<std::chrono::microseconds>(duration).count();
	LOG(result << " us");
}

Sorry for the stupid use of the "auto" keyword... I was too lazy to type the full type names for
time_point and duration - they are almost as long as in Java Reference for the header can be
found at this great site: http://en.cppreference.com/w/cpp/chrono (thanks Sender Ghost for
showing me)

The resolution seems to be in microseconds (when I formatted the output to nanoseconds, it
showed only multiples of 1000) on my system, but it might vary on other machines/platforms.

Best regards,
Honza

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by cbpporter on Sat, 12 May 2012 08:13:03 GMT
View Forum Message <> Reply to Message

std::chrono::duration_cast<std::chrono::microseconds>(duration).count()

Really? WTF is happening with C++?

Subject: Re: time measurement :: RTIMING, TimeStop, GetTickCount
Posted by dolik.rce on Sat, 12 May 2012 10:03:48 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Sat, 12 May 2012
10:13std::chrono::duration_cast<std::chrono::microseconds>(duration).count()

Really? WTF is happening with C++?
I thought exactly the same when I saw it first It would get better with "using namespace
std::chrono;", but still the style is not really up to my taste - a lot of static methods, specialized type
members in each class, and other syntactic constructions that just make it all longer... Maybe we
should create a nice, shorthand U++ wrapper

Honza

Page 7 of 7 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36207#msg_36207
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36207
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=6698&goto=36211#msg_36211
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=36211
https://www.ultimatepp.org/forums/index.php

