
Subject: PipeStream - bidirectional Stream
Posted by dolik.rce on Fri, 28 Dec 2012 17:46:35 GMT
View Forum Message <> Reply to Message

kohait00 wrote on Tue, 10 August 2010 18:26* Stream is unidirectional per definition and should
be used as such. In Contrast to other Stream implementations, Upp Stream brings in all to be
used both as Input or as Output stream. these 2 modes are supported in one single instance, but
should't be used at same time.
nevertheless, it does not produce ASSERT, Exception or sth. if one tries to Put and Get stuff from
same Stream, it simply might not be logical or what you expect, because Stream uses only one ptr
to represent current 'head' position for reading or writing. (thus it is not intrinsically possible to use
a MemStream as a Circular Buffer, which would be nice. btw, how about implementing such one .
These 2 Modes can be differed using the API functions IsStoring() / IsLoading(). The Modes are
set using SetStoring() / SetLoading() and are normally set automatically, depending on how you
created the stream instance.

Hi guys,

The above quote from Konstantin caught my eye when I was looking in the manual for a way to
create a bidirectional Stream. It turns out his ideas are quite possible to implement In the
attached archive is a PipeStream class that implements circular buffer with Stream interface. The
circular buffer can be fixed size or automatic resizing. I believe this class might be useful for
example as a temporary storage for data that need to be passed from one interface to another,
where the rates at which those interfaces produce/consume data differ and buffering is needed
(e.g. pumping data from stdin to external library).

Internally the class only adds second pointer to manage read and write positions and takes care
of allocating/reallocating/deleting the buffer. The buffering inherited from Stream is intentionally
deactivated, because the data are buffered by definition and it would be sub-optimal to buffer it
twice. Seeking is not possible, most of other Stream capabilities is working as expected. Complete
documentation is included.

Example usage:#include <PipeStream/PipeStream.h>
using namespace Upp;

CONSOLE_APP_MAIN {
	PipeStream s(8, true); // create with PipeStream with
	 // smallish buffer to demonstrate resizing
	int n;
	String t;
	StringBuffer b;
	
	s.Put('a'); // writing to stream
	s.Put("bcd");
	s.Put(String("efghijklm"));
	ASSERT(s.GetReserved() > 8); // the internal buffer grew because
	 // strlen("abcd") + strlen("efghijklm") > 8
	

Page 1 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=38610#msg_38610
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38610
https://www.ultimatepp.org/forums/index.php

	t = s.Get(5); // reading from stream
	ASSERT(t == "abcde");
	t = s.Get(10);
	ASSERT(t == "fghijklm");
	t = s.Get(10);
	ASSERT(t.IsEmpty()); // nothing more to read...
	
	
	s.Put(String("nopqrs"));
	n = s.Peek(); // peeking
	ASSERT(n == 'n');
	n = s.Get(); // reading single byte
	ASSERT(n == 'n');
	
	
	b.Cat("tuvwxyz"); // writing from buffer
	s.Put(~b, b.GetCount());
	
	b.SetCount(s.GetLeft()); // reading to buffer
	s.GetAll(~b, s.GetLeft());
	ASSERT(String(b) == "opqrstuvwxyz");
}
It all works well with current version of Stream, but I noticed there is couple of things that would
make it work even better: If Stream::SetLoading() and Stream::SetStoring were virtual, it would
make PipeStream work with serialization too. Not sure if it would be good for anything though...
Stream::IsLoading() and Stream::IsStoring() should be const.
It might need a bit more work, but to me it looks quite useful and usable. What do you think?

Best regards,
Honza

File Attachments
1) PipeStream.zip, downloaded 360 times

Subject: Re: PipeStream - bidirectional Stream
Posted by kohait00 on Mon, 07 Jan 2013 14:37:34 GMT
View Forum Message <> Reply to Message

nice thing

i myself started sth similar. will check back the code (is some tim e ago now) and let you know..

happy new year btw.

Page 2 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=3999
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=38693#msg_38693
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38693
https://www.ultimatepp.org/forums/index.php

Subject: Re: PipeStream - bidirectional Stream
Posted by mirek on Mon, 28 Jan 2013 19:04:15 GMT
View Forum Message <> Reply to Message

Looking at the code, I am not quite sure that you interpret loading/storing flag correctly. It really is
just a flag for serialization routines...

I think I would not bother implementing SetLoading / SetStoring in PipeStream. I believe that in
typical scenario, only either input or output will do serialization, so it makes sense to set in just for
single end of pipe... In that case, what is already in Stream should be enough.

(consts added).

Mirek

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Mon, 28 Jan 2013 20:08:20 GMT
View Forum Message <> Reply to Message

Hi Mirek

mirek wrote on Mon, 28 January 2013 20:04Looking at the code, I am not quite sure that you
interpret loading/storing flag correctly. It really is just a flag for serialization routines...I'm well
aware that I give the loading/storing flag completely new meaning. A separate flag could be
introduced to get the bidirectional access, but I don't think there would be much difference...

mirek wrote on Mon, 28 January 2013 20:04I think I would not bother implementing SetLoading /
SetStoring in PipeStream. I believe that in typical scenario, only either input or output will do
serialization, so it makes sense to set in just for single end of pipe... In that case, what is already
in Stream should be enough.
Perhaps you are right about this. I can't really imagine any scenario where PipeStream would be
used for serialization. It is intended for different tasks, mainly as buffer between various interfaces,
as mentioned above.

Also, since the last version doesn't require explicitly calling SetLoading/SetStoring before
reading/writing (first versions did treat incorrect state as error), and since using it for serialization
is unlikely, it can be probably dropped without loosing any capabilities. Tomorrow I will update the
code and than we can discuss it further...

Thanks for your feedback.

Honza

Subject: Re: PipeStream - bidirectional Stream

Page 3 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=38944#msg_38944
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38944
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=38945#msg_38945
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=38945
https://www.ultimatepp.org/forums/index.php

Posted by mirek on Mon, 18 Feb 2013 18:48:24 GMT
View Forum Message <> Reply to Message

After some more detailed code-review, there is one thing that makes me uneasy, and it is
rdlim/wrlim.

First, you are comparing real pointers to NULL there, which is undefined in C/C++. Well, it will
work in practice, but still...

More serious (but related) is the fact, that you are not using them at all Which in turn means that
all the logic behind "fast" inlined Get/Put goes away. Perhaps I am not seeing everything right, but
I think that you should be able to setup correct rdlim/wrlim in SetStatus and Get/Put... (if there is a
reason, please tell, I am inclined to try myself, so if it is no-go, I would save my time

Somewhat related (in LZMA). In LzmaInStream::Read, how do you know that there is size
elements available in PipeStream? I guess there is a reason hidden in the code, but I decided to
ask first

Mirek

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Mon, 18 Feb 2013 21:08:58 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 18 February 2013 19:48After some more detailed code-review, there is one
thing that makes me uneasy, and it is rdlim/wrlim.

First, you are comparing real pointers to NULL there, which is undefined in C/C++. Well, it will
work in practice, but still...

Oups, forgot about that. I think it can be fixed by setting them to point on the beginning of the
PipeStream buffer, to achieve the same intended effect of bypassing the Stream funcionality (as
described below). Patch is attached.

mirek wrote on Mon, 18 February 2013 19:48
More serious (but related) is the fact, that you are not using them at all Which in turn means that
all the logic behind "fast" inlined Get/Put goes away. Perhaps I am not seeing everything right, but
I think that you should be able to setup correct rdlim/wrlim in SetStatus and Get/Put... (if there is a
reason, please tell, I am inclined to try myself, so if it is no-go, I would save my time If I remember
correctly the reason was that I wanted to use circular buffer, so there would be cases where wrlim
or rdlim would be before the current ptr and that would be wrongly interpreted as a reason to
read/flush more data. So I disabled the "buffering" in Stream completely. Perhaps I don't
understand Stream correctly, but I got the impression that with the intended usage of PipeStream
(reading and writing in fairly big chunks of data) most of the operations would be performed
directly on the circular buffer without much performance penalty. The only methods where I see
problem is Put(String), Put(const char*) and Put(int, int), where the iteration would probably make
it bit slower. If you can figure out how to use the circular buffer with wrlim and rdlim always in

Page 4 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39141#msg_39141
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39141
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39143#msg_39143
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39143
https://www.ultimatepp.org/forums/index.php

correct position, it would be the best, of course.

mirek wrote on Mon, 18 February 2013 19:48
Somewhat related (in LZMA). In LzmaInStream::Read, how do you know that there is size
elements available in PipeStream? I guess there is a reason hidden in the code, but I decided to
ask first That's simple - I don't The Read() function is not required to return size bytes, any
number in range (0, size) is fine. Zero bytes returned means end of stream, which could make a
problem here, but there is a condition in Put() that iteration of compression is only performed
when there is at least 2^15 bytes of data available (which is the smallest chunk accepted by
LzmaEnc_CodeOneBlock). Alternatively, it can be also called when the stream is closed with
End(), but then it is correct to signalize end of stream when we run out of data in the PipeStream,
because it is really an end.

I hope I explained it all well and correctly, it's been a while since I wrote it

Honza

File Attachments
1) PipeStream.patch, downloaded 315 times

Subject: Re: PipeStream - bidirectional Stream
Posted by mirek on Mon, 18 Feb 2013 21:42:31 GMT
View Forum Message <> Reply to Message

dolik.rce wrote on Mon, 18 February 2013 16:08mirek wrote on Mon, 18 February 2013 19:48After
some more detailed code-review, there is one thing that makes me uneasy, and it is rdlim/wrlim.

First, you are comparing real pointers to NULL there, which is undefined in C/C++. Well, it will
work in practice, but still...

Oups, forgot about that. I think it can be fixed by setting them to point on the beginning of the
PipeStream buffer, to achieve the same intended effect of bypassing the Stream funcionality (as
described below). Patch is attached.

mirek wrote on Mon, 18 February 2013 19:48
More serious (but related) is the fact, that you are not using them at all Which in turn means that
all the logic behind "fast" inlined Get/Put goes away. Perhaps I am not seeing everything right, but
I think that you should be able to setup correct rdlim/wrlim in SetStatus and Get/Put... (if there is a
reason, please tell, I am inclined to try myself, so if it is no-go, I would save my time If I remember
correctly the reason was that I wanted to use circular buffer, so there would be cases where wrlim
or rdlim would be before the current ptr and that would be wrongly interpreted as a reason to
read/flush more data. So I disabled the "buffering" in Stream completely. Perhaps I don't
understand Stream correctly, but I got the impression that with the intended usage of PipeStream
(reading and writing in fairly big chunks of data) most of the operations would be performed
directly on the circular buffer without much performance penalty. The only methods where I see
problem is Put(String), Put(const char*) and Put(int, int), where the iteration would probably make
it bit slower. If you can figure out how to use the circular buffer with wrlim and rdlim always in

Page 5 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4062
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39144#msg_39144
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39144
https://www.ultimatepp.org/forums/index.php

correct position, it would be the best, of course.

Even with circular buffer, there IMO is always range that can be expressed using rd/wrlim. And we
do not know what the use of PipeStream is to be...

Quote:
That's simple - I don't The Read() function is not required to return size bytes, any number in
range (0, size) is fine. Zero bytes returned means end of stream, which could make a problem
here, but there is a condition in Put() that iteration of compression is only performed when there is
at least 2^15 bytes of data available (which is the smallest chunk accepted by
LzmaEnc_CodeOneBlock). Alternatively, it can be also called when the stream is closed with
End(), but then it is correct to signalize end of stream when we run out of data in the PipeStream,
because it is really an end.

Ah, I missed that size is pointer... OK then.

SetLoading is now unnecessary, right?

Mirek

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Mon, 18 Feb 2013 22:04:54 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 18 February 2013 22:42Even with circular buffer, there IMO is always range
that can be expressed using rd/wrlim. And we do not know what the use of PipeStream is to
be...Perhaps you're right. It would be a partial optimization, for the price of more complex code. I
admit I was glad it just works, so I wasn't thinking about it much I'll try to look at it.

mirek wrote on Mon, 18 February 2013 22:42SetLoading is now unnecessary, right? Yes,
managment of reading/writing state is now independent from SetStoring/Loading and hidden from
user.

Honza

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Mon, 18 Feb 2013 23:36:17 GMT
View Forum Message <> Reply to Message

dolik.rce wrote on Mon, 18 February 2013 23:04mirek wrote on Mon, 18 February 2013
22:42Even with circular buffer, there IMO is always range that can be expressed using rd/wrlim.

Page 6 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39146#msg_39146
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39146
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39147#msg_39147
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39147
https://www.ultimatepp.org/forums/index.php

And we do not know what the use of PipeStream is to be...Perhaps you're right. It would be a
partial optimization, for the price of more complex code. I admit I was glad it just works, so I wasn't
thinking about it much I'll try to look at it.
Ok, I found the showstopper... When you use wrlim/rdlim, the Stream functions know nothing
about the fact that PipeStream is bidirectional and won't swap ptr and pptr when necessary. As far
as I can tell at this late hour, it is only possible to overcome this problem by requiring user to
explicitly set the state before each Get/Put operation, which is IMHO quite ugly Or do you have
any other idea? I would prefer bypassing the Stream rather than having to put SetState() call to
every place where it might be needed...

Honza

Subject: Re: PipeStream - bidirectional Stream
Posted by mirek on Mon, 18 Feb 2013 23:40:12 GMT
View Forum Message <> Reply to Message

dolik.rce wrote on Mon, 18 February 2013 18:36Or do you have any other idea? I would prefer
bypassing the Stream rather than having to put SetState() call to every place where it might be
needed...

Honza

Set lims to value that allows fast Get/Put only in actual mode and forces _Get/_Put otherwise.

E.g. in read mode, set wrlim to buffer begin. Then when Put is used, it will go to _Put, where the
situation can be fixed (and rdlim set to buffer begin).

Mirek

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Wed, 20 Feb 2013 19:40:47 GMT
View Forum Message <> Reply to Message

mirek wrote on Tue, 19 February 2013 00:40Set lims to value that allows fast Get/Put only in
actual mode and forces _Get/_Put otherwise.

E.g. in read mode, set wrlim to buffer begin. Then when Put is used, it will go to _Put, where the
situation can be fixed (and rdlim set to buffer begin).
Well, that sounded easier than it was It also required to get rid of the internal counter of available
bytes, because the Stream methods wouldn't update it. This lead to some hidden bugs which took
me quite some time to figure out...

Anyway, I commited the changes to sandbox and it should be working now. The last thing I'm not
sure about is the GetLeft() method, returning the number of bytes available for reading. It is not

Page 7 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39148#msg_39148
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39148
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39155#msg_39155
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39155
https://www.ultimatepp.org/forums/index.php

virtual in Stream, but calculated as GetSize() - GetPos(). GetSize could be implemented in
PipeStream to work correctly, but GetPos in it's current form will return wrong values Any ideas
about this? What about making at least one of GetPos,GetLeft virtual too?

Honza

Subject: Re: PipeStream - bidirectional Stream
Posted by mirek on Wed, 20 Feb 2013 19:47:13 GMT
View Forum Message <> Reply to Message

dolik.rce wrote on Wed, 20 February 2013 14:40mirek wrote on Tue, 19 February 2013 00:40Set
lims to value that allows fast Get/Put only in actual mode and forces _Get/_Put otherwise.

E.g. in read mode, set wrlim to buffer begin. Then when Put is used, it will go to _Put, where the
situation can be fixed (and rdlim set to buffer begin).
Well, that sounded easier than it was It also required to get rid of the internal counter of available
bytes, because the Stream methods wouldn't update it. This lead to some hidden bugs which took
me quite some time to figure out...

Anyway, I commited the changes to sandbox and it should be working now. The last thing I'm not
sure about is the GetLeft() method, returning the number of bytes available for reading. It is not
virtual in Stream, but calculated as GetSize() - GetPos(). GetSize could be implemented in
PipeStream to work correctly, but GetPos in it's current form will return wrong values Any ideas
about this? What about making at least one of GetPos,GetLeft virtual too?

IMO, GetPos/GetLeft/GetSize etc... does not make much sense in non-seekable stream anyway
(but we should update docs).

BTW, working on filter-streams, I have changed IsEof implementation to use Term instead. So as
long as Term returns <0 value, sequential reading should work as expected.

Mirek

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Wed, 20 Feb 2013 20:41:45 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 20 February 2013 20:47IMO, GetPos/GetLeft/GetSize etc... does not make
much sense in non-seekable stream anyway (but we should update docs).
Looking in the docs now, it is really defined as difference between size and position... So the
method in PipeStream should be renamed since it returns "number of bytes available for
immediate read", which is definitely something else. What about calling it GetCount as
everywhere else? Or something more descriptive like GetBytesAvailable?

Page 8 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39156#msg_39156
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39156
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39159#msg_39159
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39159
https://www.ultimatepp.org/forums/index.php

Honza

Subject: Re: PipeStream - bidirectional Stream
Posted by mirek on Wed, 20 Feb 2013 20:52:23 GMT
View Forum Message <> Reply to Message

GetAvailable?

Subject: Re: PipeStream - bidirectional Stream
Posted by dolik.rce on Wed, 20 Feb 2013 21:49:05 GMT
View Forum Message <> Reply to Message

mirek wrote on Wed, 20 February 2013 21:52GetAvailable?
Ok, updated. Hopefully it is now ready for next round of your review

Page 9 of 9 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39160#msg_39160
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39160
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=7202&goto=39161#msg_39161
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39161
https://www.ultimatepp.org/forums/index.php

