
Subject: Vector performance on a specific situation
Posted by crydev on Tue, 18 Jun 2013 07:01:26 GMT
View Forum Message <> Reply to Message

Hello,

I have a question about the Vector's performance in a specific situation. I have a program that
utilizes 8 threads on new systems, heavy utilization of paralellism. Say I have a Vector containing
300 items. I split the indexes of those items over 8 threads, meaning the Vector will be accessed
from 8 threads simultaniously, but every thread accesses a different item. The same memory
location is never modified.

I have read something about Vector cache lines. What is the performance of the U++
implementation of the Vector in this situation? I tried to copy the thread-specific data into arrays
and passed them into the functions, but it seems like just as fast.

If there is a better way to do this, I appreciate any suggestions.

Subject: Re: Vector performance on a specific situation
Posted by mirek on Tue, 18 Jun 2013 08:52:34 GMT
View Forum Message <> Reply to Message

crydev wrote on Tue, 18 June 2013 03:01Hello,

I have a question about the Vector's performance in a specific situation. I have a program that
utilizes 8 threads on new systems, heavy utilization of paralellism. Say I have a Vector containing
300 items. I split the indexes of those items over 8 threads, meaning the Vector will be accessed
from 8 threads simultaniously, but every thread accesses a different item. The same memory
location is never modified.

I have read something about Vector cache lines. What is the performance of the U++
implementation of the Vector in this situation?

It all dependes on sizeof(T) etc... but if you are doing a lot of access to elements and distribute
threads in nearby indicies, cacheline sharing between threads is indeed a big problem.

Note that trivial Vector->Array does not really help here, as individual elements will be likely
allocated in the same cachelines cells.

So it all depends on what you are doing with elements. 300 cells does not sound like too many,
indicating that per-cell computation is pretty heavy (if it there is any advantage to use multiple
threads).

For more qualified reply I would need to know definition of T and some description about
computation.

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40131#msg_40131
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40131
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40132#msg_40132
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40132
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Vector performance on a specific situation
Posted by Novo on Tue, 18 Jun 2013 17:11:09 GMT
View Forum Message <> Reply to Message

crydev wrote on Tue, 18 June 2013 03:01Hello,

I have a question about the Vector's performance in a specific situation. I have a program that
utilizes 8 threads on new systems, heavy utilization of paralellism. Say I have a Vector containing
300 items. I split the indexes of those items over 8 threads, meaning the Vector will be accessed
from 8 threads simultaniously, but every thread accesses a different item. The same memory
location is never modified.

I have read something about Vector cache lines. What is the performance of the U++
implementation of the Vector in this situation? I tried to copy the thread-specific data into arrays
and passed them into the functions, but it seems like just as fast.

If there is a better way to do this, I appreciate any suggestions.
If you are just reading data there will be no problems. But if you write to elements (even if they
are not shared among threads) you get yourself into false sharing problem. Basically, the idea is
that CPU doesn't work with words, it works with cache lines. The simplest way to fix that is to add
padding to your data. Example: instead of using raw int you can use a structure below.

struct MyData {
 int data;
 char padding[64 - sizeof(data)];
};

Size of cache line is usually 64 bytes, so you need to add padding to make you data land onto
different cache lines.

Subject: Re: Vector performance on a specific situation
Posted by crydev on Wed, 19 Jun 2013 07:03:01 GMT
View Forum Message <> Reply to Message

Thank you for your answers.

sizeof(T) is 16-bytes.

struct
{
 unsigned int;

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40135#msg_40135
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40135
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40137#msg_40137
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40137
https://www.ultimatepp.org/forums/index.php

 int;

 struct
 {
 int;
 int;
 }
}

What my code does is reading a struct instance from the vector and editing the two integer fields
in the sub-struct. What I did now, also stated in my first post, is copying the Vector.GetCount() / 8
count of structs from the vector into an array and performing operations there. Afterwards I copy
them back into the vector at the original positions.

As I stated, it seems just as fast, the profiler also notes so. Can I conclude from that finding that
this operation is faster to prevent cacheline sharing?

Subject: Re: Vector performance on a specific situation
Posted by mirek on Wed, 19 Jun 2013 07:14:17 GMT
View Forum Message <> Reply to Message

crydev wrote on Wed, 19 June 2013 03:03Thank you for your answers.

sizeof(T) is 16-bytes.

struct
{
 unsigned int;
 int;

 struct
 {
 int;
 int;
 }
}

What my code does is reading a struct instance from the vector and editing the two integer fields
in the sub-struct.

This does not sound like awful lot of computation. I think that single thread will handle the task as
fast or perhaps faster than multiple threads...

Now if you had 3 millions of elements instead of 300...

(Of course, I can still be mistaken about the amount of computation per element performed. Have
you benchmarked that (I mean, single-threaded time to do one element)?

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40138#msg_40138
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40138
https://www.ultimatepp.org/forums/index.php

Subject: Re: Vector performance on a specific situation
Posted by crydev on Wed, 19 Jun 2013 07:37:43 GMT
View Forum Message <> Reply to Message

The computation on these elements is not very heavy, but the information in these structs is used
to read over gigabytes of memory and compare every byte. If I use only one thread to do that it
will be busy for a few minutes, where 8 threads will handle it in a few seconds.

The amount of elements differs per process running on a windows machine. A small process has
around 300 pages, which makes the vector contain 300 elements, but bigger processes can
contain over 2000 pages, which increases workload a lot.

I have not yet benchmarked it for one thread, because I think it doesn't matter. If you use only one
thread you simultaniously read from 0 to the end, where this problem is not really applicable.
When 8 threads operate on the Vector, the first one operates on 0-49, the next on 50-99, and so
on.

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=7659&goto=40139#msg_40139
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=40139
https://www.ultimatepp.org/forums/index.php

