
Subject: Heap errors behavior is dependent on target machine.
Posted by jfranks on Sat, 28 Nov 2015 13:03:33 GMT
View Forum Message <> Reply to Message

Brief Description: Memory heap errors don't happen for development
 		 machine 'A'. However, they do occur for the same
 		 executable image on the embedded target machine
 		 'B'.

Full Description of the issue:

 Description of development machine -- i.e., machine 'A'

 The development machine is a Dell desktop computer that has an
 Intel CORE i5, and a host operating system Windows 7. A virtual
 machine was installed using Oracle VM Virtual Box to run a guest
 operating system Linux Mint 17.2. Our application development was
 done on this virtual machine as a Linux based application using U++
 nightly snapshot upp-x11-src-9200.

 Description of the embedded target machine -- i.e., machine 'B'

 This is proprietary custom hardware that has a touchscreen, custom
 keypad entry device, a commercial power supply, commercial single
 board computer, and a hard drive. The operating system is the same
 as that used on the development machine. The CPU is compatible
 to run the executable image produced on the development machine.

 Description of the problem we are having with U++ memory diagnostic:

 1. We developed and debugged our graphical U++ application on
 machine 'A'. All memory heap errors were located and
 corrected. The executable image developed on this machine is
 compatible for running on machine 'B'.

 2. We installed the debug version of our executable image on machine
 'B'. Everything runs great except when we exit our application.
 The behavior is different on machine 'B' in that there are memory
 heap errors, followed by a segfault on X11.

 	 Heap leaks detected!
	 Segmentation fault

 3. We enabled machine 'B' to have development capability and installed
 U++ IDE based on upp-x11-src-9200. We did a code checkout into this
 machine from our SVN server. We compiled the code. Then we ran the
 debug executable built on this machine. The result was the same
 as item 2 above.

Page 1 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45539#msg_45539
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45539
https://www.ultimatepp.org/forums/index.php

 The debug executable image built on machine 'B' was copied to
 machine 'A' and it exhibited a different behavior -- it worked
 correctly on exit from the application, i.e., there were no
 memory heap errors, nor segfault. That is odd.

 Next, we decided to start debugging on machine 'B' in earnest.
 We modified our application code and inserted MemoryIgnoreLeaksBegin();
 and MemoryIgnoreLeaksEnd(); so as to exclude all of our application
 code from leak detection. The result was the same as in item 2 above.

 We more aggressively applied the U++ memory ignore function by reworking
 the GUI_APP_MAIN macro and explicitly replaced it with the following.

//GUI_APP_MAIN {
void GuiMainFn_();
int main(int argc, const char **argv, const char **envptr)
{
MemoryIgnoreLeaksBegin();
	UPP::AppInit__(argc, argv, envptr);
	UPP::Ctrl::InitX11(NULL);
	UPP::AppExecute__(GuiMainFn_);
	UPP::Ctrl::ExitX11();
	UPP::AppExit__();
MemoryIgnoreLeaksEnd();
	return UPP::GetExitCode();
}

void GuiMainFn_()
{
	... our application code starts here
}

 The results on machine 'B' did not change -- still a memory heap
 issue on exit and a segfault. A large log file was produced with
 many memory breakpoints.

 Next, we compiled a release version of the application on
 machine 'B' without any debug flags. Everything works great
 because the U++ memory diagnostics are disabled. As we run the
 release version, there is nothing that indicates a problem at any
 time, even when we exit.

 The log file generated from running the debug was over 2400 items.
 I've attached a snapshot of the call-stack while in the debugger
 for the lowest numbered memory break-point #1.

 We are having a difficult time sorting this out and are asking

Page 2 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

 for help or ideas of where we go from here.

-- Jeff

File Attachments
1) call-stack.jpg, downloaded 414 times

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Sat, 28 Nov 2015 17:43:27 GMT
View Forum Message <> Reply to Message

Hi,

I would try/suggest these:

Does the problem occur with e.g. examples/UWords too?

Have you tried memory breakpoint? http://www.ultimatepp.org/srcdoc$Core$Leaks$en-us.html

From the information given, it looks like the issue with global constructor, e.g. some INITBLOCK.

Can you post a couple of lines of log with leak with smallest breakpoint number?

Mirek

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Sat, 28 Nov 2015 21:37:23 GMT
View Forum Message <> Reply to Message

Thank you for helping us.

 Q1. Does the problem occur with e.g. examples/UWords too?

 A1. No, the problem does NOT occur with examples/UWord. I compiled
 and ran this on machine 'B' and everything worked correctly.
 I was able to enter some text, save it to a qtf file, exit the
 program without any issues.

 Q2. Have you tried memory breakpoint?
 http://www.ultimatepp.org/srcdoc$Core$Leaks$en-us.html

 A2. Yes we have done that. Memory breakpoint #1 was used to generate
 the snapshot of the call-stack (uploaded previously), while in
 the debugger.

Page 3 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4887
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45540#msg_45540
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45540
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45541#msg_45541
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45541
https://www.ultimatepp.org/forums/index.php

 It seems strange memory break-point #1 was not hit immediately
 when the application was run. Instead, break-point #1 did not
 engage in the debugger until we tried to exit the application. I
 expected it to be the other way around.

 Q3. Can you post a couple of lines of log with leak with smallest
 breakpoint number?

 A3. Yes, I have done that on this response. Also, I was in error when
 I said that there were more than 2200 items in the log file.
 Actually, there are only 355 items each time we run the
 application and then exit. I ran wc on the log-file erroneously
 thinking that each line was a memory leak (too many long hours).

 174 items + <size 828>
 174 items + <size 812>
 7 items 	 <various sizes>

 I've included the log-file with comments that show where patterns
 repeat until the final 7 items are reported. I have not been able
 to figure out anything relating to the repeating patters, however,
 the last 7 items have to do with a shared library that manages
 the serial ports. Each one of the 7 items is caused by a stdc++
 string that is part of that library.

 As an experiment, I modified that shared library to use const char*
 instead of stdc++ strings. For example:

#if 0
 const std::string ERR_MSG_PORT_NOT_OPEN = "Serial port not open." ;
 const std::string ERR_MSG_PORT_ALREADY_OPEN = "Serial port already open." ;
 const std::string ERR_MSG_UNSUPPORTED_BAUD = "Unsupported baud rate." ;
 const std::string ERR_MSG_UNKNOWN_BAUD = "Unknown baud rate." ;
 const std::string ERR_MSG_INVALID_PARITY = "Invalid parity setting." ;
 const std::string ERR_MSG_INVALID_STOP_BITS = "Invalid number of stop bits." ;
 const std::string ERR_MSG_INVALID_FLOW_CONTROL = "Invalid flow control." ;
#else
 const char* ERR_MSG_PORT_NOT_OPEN = "Serial port not open." ;
 const char* ERR_MSG_PORT_ALREADY_OPEN = "Serial port already open." ;
 const char* ERR_MSG_UNSUPPORTED_BAUD = "Unsupported baud rate." ;
 const char* ERR_MSG_UNKNOWN_BAUD = "Unknown baud rate." ;
 const char* ERR_MSG_INVALID_PARITY = "Invalid parity setting." ;
 const char* ERR_MSG_INVALID_STOP_BITS = "Invalid number of stop bits." ;
 const char* ERR_MSG_INVALID_FLOW_CONTROL = "Invalid flow control." ;
#endif

 I compiled and installed the modified serial port shared library

Page 4 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

 and then re-tested the application. Those last 7 items
 disappeared! Also, the other items in the log file that repeated
 174 times now repeat only 124 times. I don't know why that changed.

 There must be a clue here.

-- Jeff

File Attachments
1) p101-dbg-log.txt, downloaded 343 times

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Sun, 29 Nov 2015 06:07:11 GMT
View Forum Message <> Reply to Message

So you are using C++ shared library using global constructors? I would say we have a winner...

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Sun, 29 Nov 2015 11:53:40 GMT
View Forum Message <> Reply to Message

I have 'revisited' relevant code and after a while digging through GCC docs found a possible
solution to the problem (problem being non-U++ C++ library with global objects allocating
memory). It is now in trunk, please check!

Mirek

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Sun, 29 Nov 2015 17:34:51 GMT
View Forum Message <> Reply to Message

Thank you for your help.

I did what you suggested.
Nightly build upp-x11-src-9242.tar.gz was downloaded,
installed, and used to rebuild our application.

I reverted the modifications in the serial port
shared library and restored the original stdc++ strings,
and then recompiled and re-installed it.

The test results have not changed. We still have
memory heap errors on application exit.
Examination of the log file showed that U++ memory

Page 5 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4889
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45543#msg_45543
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45543
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45545#msg_45545
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45545
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45547#msg_45547
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45547
https://www.ultimatepp.org/forums/index.php

diagnostic is still tagging the stdc++ strings from
the serial port shared library. Also, the pattern
of leaks with size 812 and 828 has not changed except
for the total number of each, which is now 162.

Conclusion: testing with nightly build 9242 shows that the
issue is not resolved.

What else that can be done?

-- Jeff

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Sun, 29 Nov 2015 17:48:03 GMT
View Forum Message <> Reply to Message

svn trunk, not nightly build (not enough nigths between since the change :)

Anyway, there is now manually created 9246 'nightly' build with new code included...

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Mon, 30 Nov 2015 01:50:33 GMT
View Forum Message <> Reply to Message

Thank you for continuing to help us on this issue.

The nightly build 9246 was downloaded, installed, and used
to build our application.

The result is the same as previous ...
Heap leaks detected!
Segmentation fault

The log file contains the same pattern of 164 pairs of size = 812 & 828.
This is followed by the last 7 breakpoints
 that correspond to stdc++ strings in the serial port shared library.

Is there something else that can be done to try and fix?

-- Jeff

Page 6 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45548#msg_45548
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45548
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45552#msg_45552
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45552
https://www.ultimatepp.org/forums/index.php

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Mon, 30 Nov 2015 09:03:01 GMT
View Forum Message <> Reply to Message

Getting out of options.

The main hypothesis here is that we are detecting leaks too early.

Still, we can check this:

In the file with those std::string globals, put something like

struct MyInitChecker {
 MyInitChecker() { printf("Module initialized"); }
 ~MyInitChecker() { printf("Module deinitialized"); }
};

static const MyInitChecker myinitchecker;

then at the end of Core/heapdbg.cpp change destructor:

MemDiagCls::~MemDiagCls()
{
	if(--sMemDiagInitCount == 0) {
 printf("Now checking for leaks");
		UPP::MemoryDumpLeaks();
 }
}

Also, there are some details not yet provided:

- what is that "compatible" CPU?
- is the system updated to current version and it is exactly the same?
- are there any peripherals using serial communication that are not on Dell?
- what is that shared library?

Last but not least, it is entirely possible that the library leaks by design. In that case, it can be just
bad luck and not really fixable. Well, in reality, leaving some global leaks is still considered
"normal" in mainstream C++.

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Mon, 30 Nov 2015 09:05:59 GMT

Page 7 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45553#msg_45553
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45553
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php

View Forum Message <> Reply to Message

P.S.:

You might also try this, after the first check:

MemDiagCls::~MemDiagCls()
{
	if(--sMemDiagInitCount == 0) {
 printf("Now checking for leaks");
	//	UPP::MemoryDumpLeaks();
 }
}

(That will turn off leaks checking, but will be helpful to check that what the shared library does
after checking for leaks).

Another thing to try, nearby:

static const MemDiagCls sMemDiagHelper __attribute__ ((init_priority (101)));

change to

static const MemDiagCls sMemDiagHelper __attribute__ ((init_priority (0)));

- compiler will warn there, but it is worth try

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Mon, 30 Nov 2015 09:45:34 GMT
View Forum Message <> Reply to Message

I have found a way how to disable leaks checking in some 'external' cases like this one, it is now
in _trunk_.

You can also just replace heapdbg.cpp from here

 https://github.com/ultimatepp/mirror/blob/1ce7608b2fb7571902
917401d4215fb76f03eafd/uppsrc/Core/heapdbg.cpp

Please try and report (after those other tests :).

Page 8 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45554#msg_45554
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45554
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45555#msg_45555
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45555
https://www.ultimatepp.org/forums/index.php

Mirek

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Tue, 01 Dec 2015 04:58:39 GMT
View Forum Message <> Reply to Message

Great work!! Thank you so much for your help.

 1. Regarding your instructions -- Mon, 30 November 2015 10:03 . . .

 The results of that test is as follows:

 $./p101-dbg
	Module initialized
	Now checking for leaks
 Heap leaks detected!
 Segmentation fault

 The destructor for the shared serial library was not yet called
 when heap leaks were being evaluated.

 Regarding details that you requested . . .

 Q1. What is that "compatible" CPU?

 A1. Celeron J1900 on an IMB-151 single board computer.
 Reference: http://www.asrock.com/ipc/overview.asp?Model=IMB-151

 	Also, on machine 'B', "uname -a" provides the following:

	Linux administrator-desktop 3.19.0-28-generic #30~14.04.1-Ubuntu \
	 SMP Tue Sep 1 09:32:55 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

 Q2. Is the system updated to current version and is it exactly the same?

 A2. Machines 'A' and 'B' are using Linux Mint 17.2 distros. There
 is one serial port sharable library (32-bit) that is not part
 of the distro that was installed on both machines.

 Q3. Are there any peripherals using serial communications that are
 not on Dell?

 A3. Yes. The installation of our application on the embedded
 target machine 'B' uses serial port #1 for logging, and serial
 port #2 for Modbus communications. So, two serial ports exist

Page 9 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45556#msg_45556
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45556
https://www.ultimatepp.org/forums/index.php

 in hardware for machine 'B'. However, the application can run
 without these serial ports, since logging and Modbus are
 optional items.

	The development Machine 'A' is just a common desktop computer.
	Serial ports have not been made available to the guest virtual
	machine, which is where we are developing and testing. When
	the app runs and discovers no serial logging port and/or no
	Modbus port, these functions are just turned off.

	Also, the hardware for the embedded system machine 'B' has
	additional devices and Linux drivers to handle a custom keypad
	HID device, and a touchscreen.

 Q4. What is that shared library?

 A4. libserial-0.5.2 ... attached to this response. We have
 compiled this as a 32-bit library so that it matches our
 32-bit application for both machine 'A' and 'B'.
	libserial-0.5.2/src/SerialPort.cpp is where those stdc++
 strings are located the U++ heap diag was flagging as a
	memory leak.

 2. Regarding your instructions on Mon, 30 November 2015 10:05 . . .

 The results of testing with heap dump disabled:

 $./p101-dbg
	Module initialized
	Now checking for leaks
	Module deinitialized

 This confirms that the destructor for the serial port shared
 library is called after heap leaks has been evaluated.

 static const MemDiagCls sMemDiagHelper __attribute__ ((init_priority (0)));
 caused a compilation error (out-of-range).
 I changed the 0 to a 1, and the compiler gave a warning.

 The results of testing with init_priority (1) was the same as previous:

 $./p101-dbg
	Module initialized
	Now checking for leaks
	Module deinitialized

Page 10 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

 3. Regarding your instructions on Mon, 30 November 2015 10:45 . . .

 The modified Core/heapdbg.cpp file was downloaded and replaced
 the previous one in my copy of nightly build 9246.

 This file was obtained from

 	 https://github.com/ultimatepp/mirror/blob/1ce7608b2fb7571902
917401d4215fb76f03eafd/uppsrc/Core/heapdbg.cpp

 Results: There is an improvement !! Heap errors related to stc++
 	 strings disappeared from the log file. However, we are
	 still experiencing heap errors related to something else.

	 The pattern of heap leaks with sizes of 812 and 828 are
	 still there. The number of these varies.

	 Conclusion:

	 - memory heap leaks related to stdc++ strings
	 are resolved with the modifications that you made
		 to Core/heapdbg.cpp

	 - memory heap leaks are still being detected
	 from some other source.

 BTW: The above result was double checked.

 - Core/heapdbg.cpp was reverted to the original. Retesting showed
	 the last 7 items in the log file related to stdc++ strings
	 reappeared. This is what is expected for this test scenario.

	 - Core/heapdbg.cpp was again replaced with the new modified
	 version. Retesting showed for this case that heap errors
	 previously related to stc++ strings disappeared.
	 This is good and is an improvement.

 Conclusion:

 The memory heap diagnostic is improved so that stdc++ strings
 in shared library are ignored (that is good).

 There is another source of heap errors. Let's say that these

Page 11 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

 are all from a similar source because they always come in pairs and
 the total number for each size (812 and 828) are always the same.

 Is there a strategy that can be applied to be able to identify
 something about where these originate?

 Summary:

 One down, one to go.

 -- Jeff

File Attachments
1) SerialPortLib.tar.gz, downloaded 289 times

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by mirek on Tue, 01 Dec 2015 18:48:48 GMT
View Forum Message <> Reply to Message

Have you tried memory breakpoint on some remaining block?

Next things to try:

- try again with IgnoreMemoryLeaks around whole GUI_APP_MAIN

- try with empty GUI_APP_MAIN

- try empty project with serial library linked in

I have digged through serial library, so far found nothing suspicious... Any chance you are using
global/static objects of this serial library?

Subject: Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Wed, 02 Dec 2015 15:44:40 GMT
View Forum Message <> Reply to Message

Those are good ideas to try.

I tried a shortcut to determine where memory alloc was being

Page 12 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4891
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45557#msg_45557
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45557
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45563#msg_45563
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45563
https://www.ultimatepp.org/forums/index.php

done for size 812 and 828 by making a temporary change to
ASSERT for those sizes in U++ memory allocator.

Both of those traps pointed back to our application code related
to software that is handling custom hardware. That hardware was
not available to machine 'A', but machine 'B' is dependent on this.

I have to do more testing in order to determine if these were valid
allocations that are not leaks, or if they are the leaks we've been
looking for all along, or if there are other places where these sizes
were allocated.

At this time, the focus has shifted to our application code and not on U++
heap debug diag.

This will take a little while to sort out, but I'll report back my findings.

-- Jeff

Subject: [RESOLVED] Re: Heap errors behavior is dependent on target machine.
Posted by jfranks on Fri, 04 Dec 2015 14:29:39 GMT
View Forum Message <> Reply to Message

Mirek,

Thank you so much for improving U++ memory diagnostic so
that stdc++ strings from shared library are ignored.

As promised, here is the rest of the story to a successful
completion of this effort.

We were not able to use the breakpoint feature in the
U++ heap diag because each run of the application produced
different breakpoint serial numbers. This happened because
memory leak in our application occured on different threads
and events plus scheduling produced a non-deterministic
pattern for assigning serial numbers to each leak detected.

That is why I resorted to temporarily putting an assert
into heap diag memory allocator for size 812 and 828.
This pointed right back to our application code in a place
we did not expect. The memory heap leak ignore function
did not work on this because our code implemented a factory
class for creating event messages inside our application,
which the linker put into a special section (by design) as
the application was loaded into memory. These event messages
were related to custom hardware that was available only to

Page 13 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45566#msg_45566
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45566
https://www.ultimatepp.org/forums/index.php

machine 'B' and not available for machine 'A' due to the
lack of a driver in the VM. It turned out that some of these
messages were mishandled in our application, which caused
the heap diag error only on machine 'B', and not on machine 'A'.

We could have never completed our mission without your help
and the improvements to heap diag regarding the stdc++
strings ignore outside our application. This is great work.
U++ and theIDE have become impressive over the years.
Again, thank you for your help.

Our application now works perfectly on exit and does not have
memory heap errors anymore !!

-- Jeff

Subject: Re: [RESOLVED] Re: Heap errors behavior is dependent on target
machine.
Posted by mirek on Fri, 04 Dec 2015 16:09:07 GMT
View Forum Message <> Reply to Message

Thanks for reporting. One thing less to worry about :)

Mirek

Subject: Re: [RESOLVED] Re: Heap errors behavior is dependent on target
machine.
Posted by Mindtraveller on Fri, 04 Dec 2015 18:36:34 GMT
View Forum Message <> Reply to Message

Guys, I've been reading this topic lately like a crime story.
Glad to hear it's finally a happy end.
Just to mention, some time ago I've posted serial i/o library based on the same serial library (with
little improvements).
 http://www.ultimatepp.org/forums/index.php?t=msg&th=8894 &goto=43100&#msg_43100
May be it will be handy for some of your future projects, Jeff.

Page 14 of 14 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45567#msg_45567
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45567
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45568#msg_45568
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45568
https://www.ultimatepp.org/forums/index.php

