
Subject: What do you think about this approach to making CodeEditor more user
extendable?
Posted by cbpporter on Tue, 15 Dec 2015 11:07:19 GMT
View Forum Message <> Reply to Message

Hi Mirek,

In my project I require a powerful code editor and I'm using CodeEditor. While it is a very powerful
class, it is not that easy to add features to it without forking it. And this is what I've done.

But I am thinking about how to make it much more extensible.

Currently, there is an enum describing a bunch of hard-coded languages and a few tables with
hard-coded positions.

I'm thinking of an approach where CodeEditor has no hard coded support for languages. Instead
of a single value describing the whole language, we replace it with a structure having options and
an old language option acts as a particular collection of new boolean options.

I'll give two examples on how this could work.

First, a statement like:
if(highlight == HIGHLIGHT_CSS ? *p == '#' : pair == MAKELONG('0', 'x') || pair ==
MAKELONG('0', 'X'))
		
would become:
if(highlight.UseCSSHex ? *p == '#' : pair == MAKELONG('0', 'x') || pair == MAKELONG('0', 'X')) 

We would register the CSS syntax with this option set to true and for other registered syntaxes to
false.

Then in CSyntax I added support for #region tags, like in C#. Rather than checking if it is C# or
other languages that support #region, one would check highlight.UseRegions. This option would
be checked by EditorBar too in order to draw #region outlines, like for #ifdef. I implemented this
using a new hardcoded language, but would like a more flexible solution.

One would register a structure with appropriate options set for a language, together with keywords
and upp ids.

How does this approach sound? I already have a forked CodeEditor, so I can create an early
minimal prototype if you wish.

		

Subject: Re: What do you think about this approach to making CodeEditor more

Page 1 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45606#msg_45606
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45606
https://www.ultimatepp.org/forums/index.php


user extendable?
Posted by mirek on Tue, 15 Dec 2015 11:42:11 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 15 December 2015 12:07Hi Mirek,
Currently, there is an enum describing a bunch of hard-coded languages and a few tables with
hard-coded positions.

I am not quite sure this is the completely correct description.

Yes, styling elements (like color of comments) are currently hardcoded. However, CodeEditor is
already open w.r.t. language syntax descriptions. You can register your own syntax, with text id,
with EditorSyntax::Register. You can then activate this syntax using this text id with Highlight.

Mirek

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by cbpporter on Tue, 15 Dec 2015 13:16:01 GMT
View Forum Message <> Reply to Message

Things that I'm trying to fine tune by language:
- highlighting of #ifdefs
- highlighting of @region
- highlighting of nested comments
- highlighting of doxygen like comments
- highlighting things like literal constants a bit differently based on language
- highlighting ids based on other id rules
- highlight a few symbolic meta constants as non-keywords, but as literal constants, like true, for
languages where true is not a keyword, but a literal constant and should be highlighted as an int.

And achieve this in a pretty general and fast way.

And generally speaking, the C like language highlighter is able to approximately, often very
closely, syntax highlight a given language, but as it currently stands:
- it is not able to properly 100% highlight some inputs. The changes would be trivial to make it
100% but
- would not be compatible with C++.

That's why I proposed a structure with bool options, to make sure that highlighting is fast. What I'd
need it to handle, as just one of the examples, is "0.Foo" to be highlighted as a literal int, member
selection punctuation, id. And "7.0.Bar" as literal double, member selection punctuation, id. And
"7.0f.Foo" as float and so on. For all those pure OOP languages.

Page 2 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45607#msg_45607
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45607
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45609#msg_45609
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45609
https://www.ultimatepp.org/forums/index.php


Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by cbpporter on Wed, 16 Dec 2015 13:53:19 GMT
View Forum Message <> Reply to Message

Oh, and one more thing. Is there an HTML export function for CodeEditor? Preferably with both
inline and named CSS options. If there isn't, I need to add it.

The output of this export should be the exact text that is in the editor, but with all the font
formatting options.

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by koldo on Wed, 16 Dec 2015 15:16:35 GMT
View Forum Message <> Reply to Message

Quote:but with all the font formatting options
In addition it could be good to add this when copying to Clipboard and when printing. 

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by mirek on Thu, 17 Dec 2015 12:29:33 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Wed, 16 December 2015 14:53Oh, and one more thing. Is there an HTML
export function for CodeEditor? Preferably with both inline and named CSS options. If there isn't, I
need to add it.

The output of this export should be the exact text that is in the editor, but with all the font
formatting options.

Not yet, but interesting idea.

IMO, it should be possible to achieve this just using regular CodeEditor/LineEdit interface.

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by mirek on Thu, 17 Dec 2015 12:30:30 GMT
View Forum Message <> Reply to Message

cbpporter wrote on Tue, 15 December 2015 14:16Things that I'm trying to fine tune by language:
- highlighting of #ifdefs
- highlighting of @region
- highlighting of nested comments

Page 3 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45611#msg_45611
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45611
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=648
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45614#msg_45614
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45614
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45618#msg_45618
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45618
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45619#msg_45619
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45619
https://www.ultimatepp.org/forums/index.php


- highlighting of doxygen like comments
- highlighting things like literal constants a bit differently based on language
- highlighting ids based on other id rules
- highlight a few symbolic meta constants as non-keywords, but as literal constants, like true, for
languages where true is not a keyword, but a literal constant and should be highlighted as an int.

And achieve this in a pretty general and fast way.

And generally speaking, the C like language highlighter is able to approximately, often very
closely, syntax highlight a given language, but as it currently stands:
- it is not able to properly 100% highlight some inputs. The changes would be trivial to make it
100% but
- would not be compatible with C++.

That's why I proposed a structure with bool options, to make sure that highlighting is fast. What I'd
need it to handle, as just one of the examples, is "0.Foo" to be highlighted as a literal int, member
selection punctuation, id. And "7.0.Bar" as literal double, member selection punctuation, id. And
"7.0f.Foo" as float and so on. For all those pure OOP languages.

OK, so just to make it clear, what you are proposing concerns CSyntax highlighter?

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by cbpporter on Thu, 17 Dec 2015 12:52:28 GMT
View Forum Message <> Reply to Message

Yes. Sorry, I should have been more clear. It is about making CSyntax easier to extend for other
C like languages. The general Registering system and the other syntax classes are probably fine
as they are.

I managed I think to obtain #region #endregion support as a simple patch for the official
CodeEditor. I shall post it soon.

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by mirek on Thu, 17 Dec 2015 15:15:29 GMT
View Forum Message <> Reply to Message

OK, i have no problem with that, but perhaps it is as easy to just check current language, exactly
as is happening now?

Page 4 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45620#msg_45620
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45620
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45623#msg_45623
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45623
https://www.ultimatepp.org/forums/index.php


Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by cbpporter on Thu, 17 Dec 2015 15:46:24 GMT
View Forum Message <> Reply to Message

mirek wrote on Thu, 17 December 2015 17:15OK, i have no problem with that, but perhaps it is as
easy to just check current language, exactly as is happening now?

I'm doing a merge and testing stuff right now for the patch. And yes, we could probably leave
things as they are in CSyntax. But some things are still a bit hard to do with a semi-hardcoded
C-Like language list.

I need to add the #region and #endregion tags. So I have changed this code:

if(*p == '#' && findarg(highlight, HIGHLIGHT_JAVASCRIPT, HIGHLIGHT_CSS,
HIGHLIGHT_JSON) < 0) {
			static Index<String> macro;
			ONCELOCK {
				static const char *pd[] = {
					"include", "define", "error", "if", "elif", "else", "endif",
					"ifdef", "ifndef", "line", "undef", "pragma",
					// CLR
					"using"
				};
				for(int i = 0; i < __countof(pd); i++)
					macro.Add(pd[i]);
			}

I could add them here and that's what I'll do for the patch, but I still think it would be more elegant
to have highlight be some sort of structure with fields. findarg(highlight,
HIGHLIGHT_JAVASCRIPT, HIGHLIGHT_CSS, HIGHLIGHT_JSON) < 0 could become
highlight.HasPreproc. And the macro list would not have to be static, but instead tied to highlight,
with each separate highlight having it's own list. This way #region and #using, which are C#
mostly, would not show up in other modes.

Subject: Re: What do you think about this approach to making CodeEditor more
user extendable?
Posted by cbpporter on Wed, 13 Jan 2016 14:38:55 GMT
View Forum Message <> Reply to Message

Sorry, I didn't have time to touch this up until today.

I have attached a minimal version of #region #endregion support, done with the #if support.

And since you are not a big fan of my proposals for CSyntax, I think that it is best to continue and
do what I'm doing right now (fork CSyntax) and maybe in a few months separate it into a new

Page 5 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45625#msg_45625
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45625
https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=9495&goto=45855#msg_45855
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45855
https://www.ultimatepp.org/forums/index.php


class, i.e CSyntax (unmodified from U++, handling all standard languages) and CMySyntax
(handling only my cases). I'll delay this a few months since forking and merging occasionally is
less work :). It is just syntax highlighting after all, hardly the most important of tasks.

File Attachments
1) CSyntax.cpp, downloaded 257 times
2) CHighlight.cpp, downloaded 262 times

Page 6 of 6 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4923
https://www.ultimatepp.org/forums/index.php?t=getfile&id=4924
https://www.ultimatepp.org/forums/index.php

