
U++ - Feature #811

LocalProcess & AProcess should have "WaitForExit" synchronization method

07/19/2014 01:27 PM - Zbigniew Rebacz

Status: Rejected Start date: 07/19/2014

Priority: Normal Due date:

Assignee: Zbigniew Rebacz % Done: 0%

Category: Core Estimated time: 0.00 hour

Target version: Spent time: 0.00 hour

Description

I think it will be nice if LocalProcess & AProcess will posses one very usful method. It is "void WaitForExit()" method. The main goal of it is

to wait until the process is finished.

Implementation:

void LocalProcess::WaitForExit()

{

 if(!IsRunning())

 return;

 bool isSuccess = false;

#ifdef PLATFORM_POSIX

 int status;

 if(waitpid(pid, &status, 0) == pid) {

 isSuccess = true;

 pid = 0;

 }

#endif

#ifdef PLATFORM_WIN32

 if(WaitForSingleObject(hProcess, INFINITE)) {

 isSuccess = true;

 hProcess = NULL;

 }

#endif

 if(isSuccess)

 CloseInputAndOutput();

}

Of course this patch also intoduce new private method "CloseInputAndOutput" which target is to close all pipes related to LocalProcess.

(All implementation is included in source files).

Test case (I tested this solution with valgrind to make sure that we don't have any memory leaks):

#include <Core/Core.h>

using namespace Upp;

void startApp(LocalProcess& process) {

 #ifdef PLATFORM_POSIX

07/16/2025 1/3

 process.Start("/usr/bin/xterm");

 #endif

 #ifdef PLATFORM_WIN32

 process.Start("E:\\Programy\\Notepad++\\notepad++.exe");

 #endif

}

CONSOLE_APP_MAIN {

 for (int i = 0; i < 1; i++) {

 // Test if "WaitForExit" works.

 LocalProcess myProcess;

 startApp(myProcess);

 myProcess.WaitForExit();

 // Test if we can reuse the same instance of LocalProcces for new task.

 startApp(myProcess);

 myProcess.WaitForExit();

 }

}

History

#1 - 07/19/2014 01:30 PM - Zbigniew Rebacz

We can also expand "WaitForExit" method by timeout variable.

#2 - 07/21/2014 07:36 PM - Miroslav Fidler

- Status changed from Patch ready to New

- Assignee changed from Miroslav Fidler to Zbigniew Rebacz

This has a problem: if slave process produces a lot of output, it will block forever (pipe buffer will get full as we are not reading it, process will be blocked).

#3 - 07/21/2014 08:56 PM - Zbigniew Rebacz

- Assignee changed from Zbigniew Rebacz to Miroslav Fidler

Should we close pipes befor we start waiting and throw exception if whole operation fails?

LocalProcess localProcess("/usr/bin/xterm");

try {

 localProcess.Wait();

}

catch(const EnviromentException& e) {

 // Pipes are not available...

 Cout() << e.what() << "\n";

07/16/2025 2/3

 localProcess.Kill();

}

Or, we can just do this inside WaitForExit method. But, in above case client programer can decide what to do in exceptional situation. What do you think

about this solution?

P.S.

It will be good if we will possess a set of exceptions for different situations.

#4 - 07/22/2014 08:51 PM - Zbigniew Rebacz

- Status changed from New to Rejected

- Assignee changed from Miroslav Fidler to Zbigniew Rebacz

#5 - 07/22/2014 09:05 PM - Zbigniew Rebacz

It seems that it is bad idea, because to make it works perfect we will need more changes in Core.

Files

LocalProcess.cpp 12.6 KB 07/19/2014 Zbigniew Rebacz

LocalProcess.h 2.68 KB 07/19/2014 Zbigniew Rebacz

Process.cpp 561 Bytes 07/19/2014 Zbigniew Rebacz

07/16/2025 3/3

